$oxed{1}$ a,b を整数とする。3 次方程式 $x^3+ax^2+bx-1=0$ は 3 実解 α,β,γ を持ち、 $0<\alpha<\beta<\gamma<3$ で、 α,β,γ のうちどれかは整数である。a,b を求めよ。

| **2** | 放物線 $y=x^2$ 上に、直線 y=ax+1 に関して対称な位置にある異なる点 P、Q が存在するような a の範囲を求めよ。

- **3** 四面体 OAPQ において、|OA|=1、 $OA\perp OP$ 、 $OP\perp OQ$ 、 $OA\perp OQ$ で、 $\angle PAQ=30^\circ$ である。
 - (1) $\triangle APQ$ の面積 S を求めよ。
 - (2) |OP| のとりうる範囲を求めよ。
 - (3) 四面体 OAPQ の体積 V の最大値を求めよ。

4 複素数 $z = r(\cos\theta + i\sin\theta)$ は、条件

$$\frac{\sqrt{2}}{4} \le r \le \frac{\sqrt{5}}{2}, \quad 0^{\circ} \le \theta \le 90^{\circ}$$

をみたす。

- (1) $f(z) = |z + z^3|$ の最大値と最小値、およびそれらを与える複素数 z を求めよ。
- (2) $g(z) = |2z + z^3|$ の最大値と最小値、およびそれらを与える複素数 z を求めよ。
- $oxed{5}$ 1 から n までの数字を 1 つずつ書いた n 枚のカードがある。ただし、 $n\geq 2$ とする。
 - (1) この n 枚のカードから一度に 2 枚選び、大きい方の数字を X とする。 X の期待値 E_1 を求めよ。
 - (2) このn 枚のカードから1 枚選び、その数字を X_1 とする。そのカードをもとに戻し、改めて1 枚選び、その数字を X_2 とする。 X_1 と X_2 の小さくない方の数字をY とする。Y の期待値 E_2 を求めよ。