$oxed{1}$ $k,\,x,\,y$ は正の整数とする。三角形の 3 辺の長さが $\frac{k}{x},\,\frac{k}{y},\,\frac{1}{xy}$ で,周の長さが $\frac{25}{16}$ である。 $k,\,x,\,y$ を求めよ。

- $oxed{2}$ r>0 とし, $lpha=r(\cos heta+i\sin heta)$ とおく。任意の角 heta に対し,複素数平面上で点 $lpha+rac{1}{lpha}$ と実軸との距離は 2 以下である。r のとりうる範囲を求めよ。
- **3** a, b, c は 0 以上の実数とする。 3 点 A(a,0), B(0,b), C(1,c) は、 $\angle ABC = 30^{\circ}, \ \angle BAC = 60^{\circ}$ をみたす。
 - (1) cを求めよ。
 - (2) ABの長さの最大値と最小値を求めよ。

- 4 原点がz軸上にあり、底面がxy平面上の原点を中心とする円である円すいがある。この円すいの側面が、原点を中心とする半径1の球に接している。
 - (1) 円すいの表面積の最小値を求めよ。
 - (2) 円すいの体積の最小値を求めよ。
- **5** 最初の試行で3枚の硬貨を同時に投げ,裏が出た硬貨を取り除く。次の試行で残った硬貨を同時に投げ,裏が出た硬貨を取り除く。以下この試行をすべての硬貨が取り除かれるまで繰り返す。
 - (1) 試行が 1 回目で終了する確率 q_1 ,および 2 回目で終了する確率 p_2 を求めよ。
 - (2) 試行がn 回以上行われる確率 q_n を求めよ。