1

- (1) 正の整数 n で $n^3 + 1$ が 3 で割り切れるものをすべて求めよ。
- (2) 正の整数 n で $n^n + 1$ が 3 で割り切れるものをすべて求めよ。
- $oxed{2}$ 複素数 lpha, eta は |lpha-1|=1, |eta-i|=1 をみたす。
 - (1) $\alpha + \beta$ が存在する範囲を複素数平面上に図示せよ。
 - (2) $(\alpha-1)(\beta-1)$ が存在する範囲を複素数平面上に図示せよ。
- $\mathbf{3}$ a, c を実数とする。

空間内の 4 点 $O(0,0,0),\ A(2,0,a),\ B(2,1,5),\ C(0,1,c)$ は同一平面上にある。

- (1) cをaで表せ。
- (2) 四角形 OABC の面積の最小値を求めよ。

- 4 $f(x) = x^3 x^2 x 1, g(x) = x^2 x 1$ とする。
 - (1) 方程式 f(x)=0 はただひとつの実数解 α をもつことを示せ。また, $1<\alpha<2$ であることを示せ。
 - (2) 方程式 g(x)=0 の正の解を β とする。 α と β の大小を比較せよ。
 - (3) α^2 と β^2 の大小を比較せよ。
- 5 1 が書かれたカードが 2 枚、2 が書かれたカードが 2 枚、 \dots 、n が書かれたカードが 2 枚の合計 2n 枚のカードがある。カードをよく混ぜ合わせた後、1 枚ずつ左から順に並べる。このとき、カードに書かれている数の列を a_1,a_2,\dots,a_{2n} とする。 $a_k \geq a_{k+1} (1 \leq k < 2n)$ となる最小の k を X とする。
 - (1) X = 1 となる確率を求めよ。
 - (2) X = n となる確率を求めよ。
 - (3) m は $1 \le m < n$ をみたす整数とする。 $X \ge m$ となる確率を求めよ。