- 1 次の条件 (a)、(b) をともにみたす直角三角形を考える。ただし、斜辺の長さを p、その他の 2 辺の長さを q、r とする。
 - (a) p, q, r は自然数で、そのうちの少なくとも 2 つは素数である。
 - (b) p + q + r = 132
 - (1) q, r のどちらかは偶数であることを示せ。
 - (2) p, q, r の組をすべて求めよ。
- **2** 座標平面上に 1 辺の長さが 2 の正三角形 ABC がある。ただし, \triangle ABC の重心は原点の位置にあり,辺 BC は x 軸と平行である。また,頂点 A は y 軸上にあって y 座標は正であり,頂点 C の x 座標は正である。直線 y=x に関して 3 点 A, B, C と対称な点を,それぞれ A', B', C' とする。
 - (1) C'の座標を求めよ。
 - (2) $\triangle ABC$ と $\triangle A'B'C'$ が重なる部分の面積を求めよ。
- $oxed{3}$ 大きさがそれぞれ 5,3,1 の平面上のベクトル $ec{a}$, $ec{b}$, $ec{c}$ に対して,

$$\vec{z} = \vec{a} + \vec{b} + \vec{c}$$

とおく。

- (1) \vec{a} , \vec{b} , \vec{c} を動かすとき、 $|\vec{z}|$ の最大値と最小値を求めよ。
- (2) \vec{a} を固定し、 $\vec{a} \cdot \vec{z} = 20$ をみたすように \vec{b} , \vec{c} を動かすとき、 $|\vec{z}|$ の最大値と最小値を求めよ。

- 4 a, b を正の定数とする。関数 $y = x^3 ax$ のグラフと,点 $(0, 2b^3)$ を通る直線はちょうど 2 点 P, Q を共有している。ただし,P の x 座標は負,Q の x 座標は正である。
 - (1) 直線 PQ の方程式を a と b で表せ。
 - (2) P および Q の座標を a と b で表せ。
 - (3) $\angle POQ = 90^\circ$ となる b が存在するような a の値の範囲を求めよ。ただし、O は原点である。
- $oxed{5}$ 1, 2, 3, 4 が 1 つずつ記された 4 枚のカードがある。これらのカードから 1 枚を抜き出し元に戻すという試行を n 回繰り返す。抜き出した n 個の数の 和を X_n とし,積を Y_n とする。
 - (1) $X_n \leq n+3$ となる確率を n で表せ。
 - (2) Y_n が 8 で割り切れる確率を n で表せ。