- **1** 正の整数 n に対して,n=k+2l をみたすような 0 以上の整数の組 (k,l) の個数を a_n とする.また,n=p+2q+3r をみたすような 0 以上の整数の組 (p,q,r) の個数を b_n とする.
 - (1) a_n を n で表せ.
 - (2) n が 6 の倍数のとき, b_n を n で表せ.

2

- (1) k を定数とする. $x \ge 0$ ならば常に $4x^3 + 1 \ge kx$ となるような k の値の範囲を求めよ.
- (2) $x \ge 0, y \ge 0$ のとき, $\frac{4(x^3+y^3)+5}{x+y+1}$ の最小値とそのときの x,y の値を求めよ.
- 3 点 O を中心とする円に四角形 ABCD が内接していて,次をみたす.

$$AB = 1, BC = CD = \sqrt{6}, DA = 2$$

- (1) AC を求めよ.
- (2) $\overrightarrow{AO} \cdot \overrightarrow{AD}$ および $\overrightarrow{AO} \cdot \overrightarrow{AC}$ を求めよ.
- (3) $\overrightarrow{AO} = x\overrightarrow{AC} + y\overrightarrow{AD}$ となる x, y の値を求めよ.

 $oxed{4}$ a を定数とする.関数 $f(x),\,g(x),\,h(x)$ を次のように定める.

$$f(x) = 1 - x$$
, $g(x) = |x|$, $h(x) = \int_0^x \{f(t) - g(t - a)\}dt$

- (1) $a = \frac{1}{2}$ のとき、 $x \ge 0$ における関数 y = h(x) のグラフをかけ.
- (2) $x \ge 0$ における h(x) の最大値を a で表せ.
- $\begin{bmatrix} \mathbf{5} \end{bmatrix}$ n を 2 以上の整数, k を 3 以上の整数とする. 1 から n までの番号がそれ ぞれ書かれた n 枚のカードがある. これらのカードから 1 枚を選び元に戻すという試行を k 回行う.
 - (1) 1 回目の試行で選ばれたカードが、2 回目から k 回目までの試行のなかで 2 回以上は選ばれない確率を n と k で表せ.
 - (2) k = 3, 4 のとき, どのような n に対しても (1) で求めた確率は $\frac{1}{2}$ 以上であることを示せ.
 - (3) $k \ge 5$ のとき,ある n に対しては (1) で求めた確率が $\frac{1}{2}$ よりも小さいことを示せ.