$|\mathbf{1}|$

(1) 自然数 x, y は、1 < x < y および

$$\left(1 + \frac{1}{x}\right)\left(1 + \frac{1}{y}\right) = \frac{5}{3}$$

をみたす。x,y の組をすべて求めよ。

(2) 自然数 x, y, z は、1 < x < y < z および

$$\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right) = \frac{12}{5}$$

をみたす。x, y, z の組をすべて求めよ。

- **2** 点 O を中心とする半径 r の円周上に,2 点 A,B を $\angle AOB < \frac{\pi}{2}$ となるようにとり $\theta = \angle AOB$ とおく。この円周上に点 C を,線分 OC が線分 AB と交わるようにとり,線分 AB 上に点 D をとる。また,点 P は線分 OA 上を,点 Q は線分 OB 上を,それぞれ動くとする。
 - (1) CP + PQ + QC の最小値を r と θ で表せ。
 - (2) a=OD とおく。DP+PQ+QD の最小値を a と θ で表せ。
 - (3) さらに、点 D が線分 AB 上を動くときの DP + PQ + QD の最小値 を r と θ で表せ。
- | **3**| xy 平面上に放物線 $C: y = -3x^2 + 3$ と 2 点 A(1, 0), P(0, 3p) がある。線分 AP と C は,A とは異なる点 Q を共有している。
 - (1) 定数 p の存在する範囲を求めよ。
 - (2) S_1 を、C と線分 AQ で囲まれた領域とし、 S_2 を、C、線分 QP、および y 軸とで囲まれた領域とする。 S_1 と S_2 の面積の和が最小となる p の値を求めよ。

- $oxed{4}$ a,b,c を正の定数とする。空間内に 3 点 A(a,0,0), B(0,b,0), C(0,0,c)がある。
 - (1) 辺 AB を底辺とするとき、 $\triangle ABC$ の高さを a,b,c で表せ。
 - (2) $\triangle ABC$, $\triangle OAB$, $\triangle OBC$, $\triangle OCA$ の面積をそれぞれ S, S_1, S_2, S_3 とする。ただし,O は原点である。このとき,不等式

$$\sqrt{3}S \ge S_1 + S_2 + S_3$$

が成り立つことを示せ。

- (3) (2) の不等式において等号が成り立つための条件を求めよ。
- **5** AとBの2人が,1個のサイコロを次の手順により投げ合う。
 - 1回めはAが投げる。
 - 1, 2, 3 の目が出たら,次の回には同じ人が投げる。
 - ◆ 4.5の目が出たら、次の回には別の人が投げる。
 - 6の目が出たら、投げた人を勝ちとしそれ以降は投げない。
 - (1) n 回目に A がサイコロを投げる確率 a_n を求めよ。
 - (2) ちょうど n 回目のサイコロ投げで A が勝つ確率 p_n を求めよ。
 - (3) n 回以内のサイコロ投げで A が勝つ確率 q_n を求めよ。