$oxed{1}$ n を 2 以上の整数とする。n 以下の正の整数のうち,n との最大公約数が 1 となるものの個数を E(n) で表す。たとえば

$$E(2) = 1$$
, $E(3) = 2$, $E(4) = 2$, ..., $E(10) = 4$,

である。

- (1) E(1024) を求めよ。
- (2) E(2015) を求めよ。
- (3) m を正の整数とし、p と q を異なる素数とする。 $n=p^mq^m$ のとき

$$\frac{E(n)}{n} \geqq \frac{1}{3}$$

が成り立つことを示せ。

 $oxed{2}$ 座標平面上の原点を O とする。点 A(a,0),点 B(0,b) および点 C が

$$OC = 1$$
, $AB = BC = CA$

を満たしながら動く。

- (1) $s = a^2 + b^2$, t = ab とする。s と t の関係を表す等式を求めよ。
- (2) $\triangle ABC$ の面積のとりうる値の範囲を求めよ。
- $oxed{3}$ n を 4 以上の整数とする。正 n 角形の 2 つの頂点を無作為に選び,それらを通る直線を l とする。さらに,残りの n-2 個の頂点から 2 つの頂点を無作為に選び,それらを通る直線を m とする。直線 l と m が平行になる確率を求めよ。

- xyz 空間において,原点を中心とする xy 平面上の半径 1 の円周上を点 P が動き,点 $(0,0,\sqrt{3})$ を中心とする xz 平面上の半径 1 の円周上を点 Q が動く。
 - (1) 線分 PQ の長さの最小値と、そのときの点 P, Q の座標を求めよ。
 - (2) 線分 PQ の長さの最大値と、そのときの点 P, Q の座標を求めよ。
- 5 次の [I], [II] のいずれか一方を選択して解答せよ。なお, 解答用紙の所定の欄にどちらを選択したかを記入すること。
 - [I] 数列 $\{a_k\}$ を $a_k=k+\cos\left(\frac{k\pi}{6}\right)$ で定める。n を正の整数とする。
 - (1) $\sum_{k=1}^{12n} a_k$ を求めよ。
 - (2) $\sum_{k=1}^{12n} a_k^2$ を求めよ。

[II] a,b,c は異なる 3 つの正の整数とする。次のデータは 2 つの科目 X と Y の試験を受けた 10 人の得点をまとめたものである。

	1	2	3	4	(5)	6	7	8	9
科目 Χ の得点	a	c	a	b	b	a	c	b	c
科目 Υ の得点	a	b	b	b	a	b	a	b	a

科目 X の得点の平均値と科目 Y の得点の平均値とは等しいとする。

- (1) 科目 X の得点の分散を s_X^2 ,科目 Y の得点の分散を s_Y^2 とする。 $\frac{s_X^2}{s_Y^2}$ を求めよ。
- (2) 科目 X の得点と科目 Y の得点の相関係数を,四捨五入して小数第 1 位まで求めよ。
- (3) 科目 X の得点の中央値が 65, 科目 Y の得点の標準偏差が 11 である とき, a,b,c の組を求めよ。