- $\log_y(6x+y)=x$ を満たす正の整数 $x,\ y$ の組を求めよ。
- $oxed{2}$ 原点を O とする座標空間に 3 点 A(1,-1,1), B(1,2,4), C(-1,2,-1) が ある. 点 A を通り OB と平行な直線を I とする. 点 Q は I 上の任意の点 P に対して $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 0$ を満たす. CQ が最小となるときの Q の座標を求めよ.
- $\mathbf{3}$ x, y を実数とするとき

$$\min(x - y^2, y - x^2)$$

の最大値を求めよ。 ただし,実数 a,b に対して, $a \le b$ のとき $\min(a,b) = a$, $a \ge b$ のとき $\min(a,b) = b$ とする。

 $oxed{4}$ 大小2つのさいころを同時に投げる試行を n 回行う. k 回目の試行で出た. 大きいさいころの目を a_k 、小さいさいころの目を b_k とし, x_k , y_k を

$$\begin{cases} a_k = 1, 2 \text{ ode } \exists x_k = 1 \\ a_k = 3, 4 \text{ ode } \exists x_k = 0 \\ a_k = 5, 6 \text{ ode } \exists x_k = -1 \end{cases} \begin{cases} b_k = 1, 2, 3 \text{ ode } \exists y_k = 1 \\ b_k = 4, 5, 6 \text{ ode } \exists y_k = -1 \end{cases}$$

で定める. このとき, $A_n = \sum_{k=1}^n x_k y_k$ の値が α となる確率を $P(A_n = \alpha)$ で表す.

- (1) $P(A_3=0)$ を求めよ.
- (2) $n \ge 2$ のとき $P(A_n = n)$. $P(A_n = n 1)$, $P(A_n = n 2)$ をそれぞれ求めよ.
- 5 次の [I], [II] のいずれか一方を選択して解答せよ。なお, 解答用紙の所定の 欄にどちらを選択したかを記入すること。

[1]

t を実数とする. 直線 x=t に関して曲線 $C_1:y=x^3-2x^2-4x$ と対称な曲線を C_2 とする.

- (1) C_1 と C_2 が共有点をちょうど 3 個持つときの t の範囲を求めよ.
- (2) t が (1) の範囲を動くとき, C_1 と C_2 で画まれた 2 つの部分の面積の和を S(t) とする.S(t) の最大値を求めよ.

[II]

x > 0 に対して

$$(1+x)^{\frac{1}{x}} < e < (1+x)^{\frac{1}{x}+1}$$

が成り立つことを示せ。