- $\fbox{f 1}$ 実数 x,y,z は $x \leq y \leq z \leq 1$ かつ 4x+3y+2z=1 をみたすとする。
 - (1) x の最大値と y の最小値を求めよ。
 - (2) 3x y + z の値の範囲を求めよ。

- $oxed{2}$ 空間内に、3 点 $A_0(1,0,0),\,A_1(1,1,0),\,A_2(1,0,1)$ を通る平面 lpha と、3 点 $B_0(2,0,0),\,B_1(2,1,0),\,B_2\left(rac{5}{2},\,0\,,\,rac{\sqrt{3}}{2}
 ight)$ を通る平面 eta を考える。
 - (1) 空間の基本ベクトルを $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, $\mathbf{e}_3 = (0,0,1)$ と おくとき、ベクトル $\overrightarrow{OA_0}$, $\overrightarrow{A_0A_1}$, $\overrightarrow{A_0A_2}$, $\overrightarrow{OB_0}$, $\overrightarrow{B_0B_1}$, $\overrightarrow{B_0B_2}$ を \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 で表せ。ただし、O は空間の原点を表す。
 - (2) 原点 O と α 上の点 P を通る直線が β 上の点 P' も通っているとする。

$$\overrightarrow{OP} = \overrightarrow{OA_0} + a\overrightarrow{A_0A_1} + b\overrightarrow{A_0A_2}$$

$$\overrightarrow{OP'} = \overrightarrow{OB_0} + p\overrightarrow{B_0B_1} + q\overrightarrow{B_0B_2}$$

とおくとき、a, b を p, q で表せ。

(3) 点 P が α 上の点 A_0 を中心とする半径 1 の円 C の円周上を動くとき、点 P' が動いてできる図形 C' の方程式を p,q で表し、C' が楕円であることを示せ。

- $m{3}$ y 軸上の 2 点 A(0,1),B(0,2) と x 軸上の正の部分を動く点 P(a,0) を考える。 $\theta=\angle APB$ とおく。
 - (1) $\cos \theta$ を a で表せ。
 - (2) θ が最大になる a を求めよ。

4

- (1) 整数 m,n に対して積分 $I_{m,n} = \int_0^{2\pi} \cos mx \cos nx \, dx$ を求めよ。
- (2) 自然数 n に対して積分 $J_n = \int_0^{2\pi} \left(\sum_{k=1}^n \sqrt{k} \cos kx\right)^2 dx$ を求めよ。
- **5** 1つのさいころを投げ続けて、同じ目が2回連続して出たら終了するものとする。
 - (1) 4回目以内(4回目も含む)に終了する確率を求めよ。
 - (2) r 回目以内 (r 回目も含む) に終了する確率を求めよ。ただし、 $r \ge 2$ とする。