$\boxed{1}$ $0 \le \theta < \pi$ に対して,行列

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
\sin\theta & -\cos\theta
\end{pmatrix}$$

で表される 1 次変換を f とし、点 P の f による像を f(P) で表す。

- (1) 点 $Q\left(\cos\frac{\theta}{2},\sin\frac{\theta}{2}\right)$ に対して,f(Q) の座標を求めよ。
- (2) 点 $R\left(\sin\frac{\theta}{2}, -\cos\frac{\theta}{2}\right)$ に対して、f(R) の座標を求めよ。
 (3) f は直線 $y = \left(\tan\frac{\theta}{2}\right)x$ に関する対称移動であることを示せ。

- a を実数とする。xyz 空間内の 4 点を $A(0,a,4),\ B(-2,0,3),\ C(1,0,2),$ D(0,2,3) とし、点 P(1,0,6) に光源をおく。
 - (1) 光源が xy 平面上につくる点 A の影の座標を求めよ。また、a が実数 全体にわたって変化するとき、その影がつくる直線の方程式を求めよ。
 - (2) 光源が xy 平面上につくる三角形 BCD の影は三角形となる。この三 角形の頂点の座標を求めよ。
 - (3) a < 5 とする。光源が xy 平面上につくる四面体 ABCD の影を考え る。この影が三角形となるような a の範囲を求めよ。

- $oxed{3}$ k を実数とし, $x \geq 0$ に対して $f(x) = xe^{-x}$,g(x) = kx と定める。ただし, $e = 2.7182\cdots$ は自然対数の底である。
 - (1) $0 < x \le 2$ の範囲に f(x) = g(x) を満たす x がただ 1 つ存在するため の k の範囲を求めよ。
 - (2) k が (1) の範囲にあるとき、(1) で定まる x を a とする。積分

$$\int_0^a f(x) \, dx$$

の値をkを用いて表せ。

(3) kが(1)の範囲にあるとき、積分

$$\int_0^2 |f(x) - g(x)| \, dx$$

の値が最小となるkを求めよ。

 $oxed{4}$ p を自然数とする。数列 $\{x_n\}$ を漸化式

$$x_1 = \cos\left(\frac{2\pi}{p}\right), \quad x_{n+1} = 2(x_n)^2 - 1 \quad (n = 1, 2, 3, \dots)$$

で定める。

- (1) x_n を求めよ。
- (2) l を自然数とする。 $p=2^l$ および $p=3\times 2^l$ のそれぞれの場合について $\lim_{n\to\infty}x_n$ を求めよ。
- (3) l を自然数とする。 $p=5\times 2^l$ のとき、数列 $\{x_n\}$ は発散することを示せ。