- $oxed{1}$ $m>0,\,n>0,\,0< r<1$ とする。 $\triangle OAB$ の辺 OA を m:n に内分する点を P、辺 OB を n:m に内分する点を Q とする。また、線分 AQ を 1:r に外分する点を S、線分 BP を 1:r に外分する点を T とする。
 - (1) $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ とするとき、 \overrightarrow{OS} を \mathbf{a} , \mathbf{b} , m, n, r で表せ。
 - (2) 3点 Q, S, T が一直線上にあるとき、r を m, n で表せ。

 $\boxed{\mathbf{2}}$ $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ で定義された関数

$$f(\theta) = 4\cos 2\theta \sin \theta + 3\sqrt{2}\cos 2\theta - 4\sin \theta$$

を考える。

- (1) $t = \sin \theta$ とおく。 $f(\theta)$ を t で表せ。
- (2) $f(\theta)$ の最大値と最小値、およびそのときの θ の値を求めよ。

- **3** xy 平面上に 3 点 A(a,b), B(a+3,b), C(a+1,b+2) がある。不等式 $y \ge x^2$ の表す領域を D、不等式 y > x の表す領域を E とする。
 - (1) 点 C が領域 D に含まれ、点 A と点 B が領域 E に含まれるような a, b の条件を不等式で表せ。
 - (2) (1) で求めた条件を満たす点 (a,b) の領域 F を ab 平面上に図示せよ。
 - (3) (2) で求めた領域 F の面積を求めよ。

- $oxed{4}$ $A \ B \ D \ 2$ チームが試合を行い、どちらかが先に k 勝するまで試合を繰り返す。各試合で A が勝つ確率を p、B が勝つ確率を q とし、p+q=1 とする。A が B より先に k 勝する確率を P_k とおく。
 - (1) P_1 を p と q で表せ。
 - (2) P₂をpとqで表せ。
 - (3) $\frac{1}{2} < q < 1$ のとき、 $P_2 < P_1$ であることを示せ。