- $\boxed{1}$ a,b,c を正の実数とする。
 - (1) t>0 に対して、不等式 $bt^{b+c}+c \ge (b+c)t^b$ が成り立つことを示せ。
 - (2) x > 0, y > 0 に対して、不等式 $ax^{a+b+c} + by^{a+b+c} + c \ge (a+b+c)x^ay^b$ が成り立つことを示せ。

- $oxed{2}$ 2×2 行列 $A \mathrel{ riangle} B$ が AB = BA をみたすとき, $A \mathrel{ riangle} B$ は交換可能であるという。
 - (1) A と B が交換可能ならば、AB と B は交換可能であることを示せ。
 - (2) 行列 X, C, E を

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

と定める。ただし、a,b,c,d は実数とする。X と C が交換可能のとき、X は実数 α,β を用いて $\alpha C + \beta E$ と表されることを示せ。

- (3) 上の行列 C に対して、次の 3 条件を同時にみたす 2×2 行列 Y をすべて求めよ。
 - (a) Y と C は交換可能。
 - (b) CY = tY をみたす実数 t がある。
 - (c) Y の (2, 2) 成分は 1 である。

- **3** 相異なる 3 点 A, B, C の上を動く点 P がある。点 P の 1 秒後の位置が 以下のルールに従って定まるものとする。
 - (i) A にいるときは,確率 $\frac{1}{3}$ で A にとどまるか,確率 $\frac{1}{3}$ で B に移るか,確率 $\frac{1}{3}$ で C に移る。
 - (ii) B にいるときは、必ず C に移る。
 - (iii) C にいるときは,確率 $\frac{1}{2}$ で A に移るか,確率 $\frac{1}{2}$ で B に移る。

いま, 点 P が A からスタートしてこのルールに従って n 秒後に A, B, C にいる確率をそれぞれ $a_n,\ b_n,\ c_n$ とする。

- (1) a_1 , b_1 , c_1 , a_2 , b_2 , c_2 を求めよ。
- (2) $n \ge 2$ のとき, a_n を a_{n-1} , b_{n-1} , c_{n-1} を用いて表せ。
- (3) a_n , b_n , c_n を求めよ。

- 五日 「大程式 $3x^2+y^2=3$ で定まる楕円 E と,方程式 $xy=\frac{3}{4}$ で定まる双曲線 H を考える。
 - (1) 楕円 E と双曲線 H の交点をすべて求めよ。
 - (2) 連立不等式

$$\begin{cases} 3x^2 + y^2 \le 3\\ xy \ge \frac{3}{4} \end{cases}$$

の表す領域の面積を求めよ。