- $oxed{1}$ x>0 で定義された関数 $f(x)=\int_1^e t^{x-1}\log t\,dt$ を考える。ただし, $\log t$ は t の自然対数とし,e は自然対数の底とする。
 - (1) f(x) を求めよ。
 - (2) x > 0 において、関数 $g(x) = x^2 f(x) x^2$ の極小値、およびそのときの x の値を求めよ。

- $oxed{2}$ p を 3 以上の奇数, θ を $\cos\theta=rac{1}{p}~(0<\theta<rac{\pi}{2})$ をみたす実数とし,数列 $\{a_n\}$ を $a_n=p^n\cos(n\theta)~(n=1,2,3,\cdots)$ で定める。
 - (1) a₂ を p で表せ。
 - (2) a_{n+2} を a_{n+1} , a_n , p で表せ。
 - (3) すべての n について a_n は p で割り切れない整数であることを示せ。

- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} \hline \end{aligned} & egin{aligned} \hline \end{aligned} & eta \\ \hline \end{aligned} & eta \\ \hline \end{aligned} & eta \\ \hline \end{aligned} & E \\ \hline \e$
 - (1) r を正の実数、 θ を実数とする。点 $(r\cos\theta+1,r\sin\theta)$ が E 上にあるとき、r を θ で表せ。
 - (2) P が E 上を動くとき,PF + QF + RF + SF の最小値を求めよ。

- p を正の実数とする。a, b を実数として x=a, $y=(b-3)^2$ とおく。点 (a,b) が連立不等式 $0 \le a \le p$, $a \le b \le a+2$ の表す領域内を動くとき,座標平面上の点 (x,y) が動いてできる図形の面積を S とおく。
 - (1) p=1 のとき S の値を求めよ。
 - (2) p=5 のとき S の値を求めよ。