- $oxed{1}$ 複素数平面上における図形 $C_1,C_2,\ldots,C_n,\ldots$ は次の条件 (A) と (B) をみたすとする。ただし、i は虚数単位とする。
 - (A) C_i は原点 O を中心とする半径 2 の円である。
 - (B) 自然数 n に対して、z が C_n 上を動くとき 2w=z+1+i で定まる w の描く図形が C_{n+1} である。
 - (1) すべての自然数 n に対して、 C_n は円であることを示し、その中心を表す複素数 a_n と半径 r_n を求めよ。
 - (2) C_n 上の点 O との距離の最小値を d_n とする。このとき、 d_n を求めよ。また、 $\lim_{n\to\infty} d_n$ を求めよ。
- - (1) 線分 AP の長さを求めよ。
 - (2) P の座標を求めよ。
 - (3) S と直線 OC は 2 点で交わる。その 2 点間の距離を求めよ。
- $oxed{3}$ 以下の問いに答えよ。ただし,e は自然対数の底を表す。
 - (1) k を実数の定数とし, $f(x)=xe^{-x}$ とおく。方程式 f(x)=k の異なる実数解の個数を求めよ。ただし, $\lim_{x\to\infty}f(x)=0$ を用いてもよい。
 - (2) $xye^{-(x+y)} = c$ をみたす正の実数 x、y の組がただ 1 つ存在するときの実数 c の値を求めよ。
 - (3) $xye^{-(x+y)}=\frac{3}{e^4}$ をみたす正の実数 x、y を考えるとき、y のとりうる値の最大値とそのときの x の値を求めよ。

 $oxed{4}$ n を 2 以上の自然数とする。1 個のさいころを n 回投げて出た目の数を順に a_1,a_2,\ldots,a_n とし、

$$K_n = |1 - a_1| + |a_1 - a_2| + \dots + |a_{n-1} - a_n| + |a_n - 6|$$

とおく。また、 K_n のとりうる値の最小値を q_n とする。

- (1) $K_3 = 5$ となる確率を求めよ。
- (2) q_n を求めよ。また、 $K_n=q_n$ となるための a_1,a_2,\ldots,a_n に関する必要十分条件を求めよ。
- (3) n を 4 以上の自然数とする。 $L_n=K_n+|a_4-4|$ とおき、 L_n のとり うる値の最小値を r_n とする。 $L_n=r_n$ となる確率 p_n を求めよ。
- a,b を $a^2+b^2<1$ をみたす正の実数とする。また、座標平面上で原点を中心とする半径 1 の円を C とし、C の内部にある 2 点 A(a,0)、B(0,b) を考える。 $0<\theta<\frac{\pi}{2}$ に対して C 上の点 $P(\cos\theta,\sin\theta)$ を考え、P における C の接線に関して B と対称な点を D とおく。
 - (1) $f(\theta) = ab\cos 2\theta + a\sin \theta b\cos \theta$ とおく。方程式 $f(\theta) = 0$ の解が $0 < \theta < \frac{\pi}{2}$ の範囲に少なくとも 1 つ存在することを示せ。
 - (2) D の座標を b, θ を用いて表せ。
 - (3) θ が $0<\theta<\frac{\pi}{2}$ の範囲を動くとき、3 点 A,P,D が同一直線上にあるような θ は少なくとも 1 つ存在することを示せ。また、このような θ はただ 1 つであることを示せ。