- **1** 以下で e は自然対数の底である。必要ならば $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ を用いてもよい。
 - (1) t>0 のとき, $e \leq \left(1+\frac{1}{t}\right)^t$ の大小を判定し,その結果が正しいことを示せ。
 - $(2)\ t>0\ \text{のとき},\ e^{1-\frac{1}{2t}} \leqq \left(1+\frac{1}{t}\right)^t\ \text{の大小を判定し},\ \text{その結果が正し}$ いことを示せ。

- $oxed{2}$ 座標平面上にある放物線 $y=x^2$ を C とし,C 上の 2 点 $A(\alpha,\alpha^2)$ と $B(\beta,\beta^2)$ を考える。ただし, $\alpha<\beta$ とする。C の A における接線 ℓ_1 と,B における接線 ℓ_2 との交点を P とする。また,A を通り ℓ_1 と直交する直線 m_1 と,B を通り ℓ_2 と直交する直線 m_2 との交点を Q とする。さらに,3 点 A, B, Q を通る円の中心を点 S(s,t) とする。
 - (1) P と Q の座標を α , β を用いて表せ。
 - (1) s と t を α , β を用いて表せ。
 - (2) α , β が α < β かつ s=0 をみたしながら動くとき, t のとりうる値の範囲を求めよ。

- $oxed{3}$ p を 3 以上の素数とする。箱 S には 1 から p までの番号札が 1 枚ずつ計 p 枚入っており,箱 T には 1 から 4p までの番号札が 1 枚ずつ計 4p 枚入っている。箱 S と箱 T から番号札を 1 枚ずつ取り出し,書かれている数をそれぞれ X, Y とする。
 - (1) X と Y の積が p で割り切れる確率を求めよ。
 - (2) X と Y の積が 2p で割り切れる確率を求めよ。

4

以下の問いに答えよ。

(1) α は $\alpha > 1$ をみたす実数とする。2以上の自然数 n に対して、不等式

$$1 - \frac{1}{(n+1)^{\alpha-1}} \le (\alpha - 1) \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \le \alpha - \frac{1}{n^{\alpha-1}}$$

が成り立つことを示せ。

(2) 3以上の自然数 n に対して、不等式

$$\frac{3}{2} - \log 3 \le \sum_{k=1}^{n} \frac{1}{k} - \log n \le 1$$

が成り立つことを示せ。ただし、 $\log x$ は x の自然対数である。