1 実数全体で定義された関数

$$f(x) = \frac{2x - 2}{x^2 - 2x + 2}$$

について,次の間に答えよ。

- (1) f(x) が極大となる x の値を求めよ。
- (2) 次の数列 $\{a_n\}$ が収束するように実数 k の値を定め、その極限値を求めよ。

$$a_n = k \log(n+1) - \int_2^{n+1} f(x) dx \quad (n = 1, 2, 3, ...)$$

ただし、 $\log(n+1)$ は n+1 の自然対数である。

2 次の問に答えよ。

- (1) x の方程式 $(k-1)x^2 + (k+1)x + k 1 = 0$ が相異なる 2 つの実数 解をもつような整数 k をすべて求めよ。
- (2) $\frac{x^2-x+1}{x^2+x+1}$ が整数となるような実数 x をすべて求めよ。

3 3つの複素数の組 (z_1, z_2, z_3) が $z_1 z_2 z_3 \neq 0$ および次の①から③をみたすとする。

$$z_1 = z_2 + \overline{z}_3 \quad \cdots \quad \boxed{1},$$

$$z_2 = \overline{z}_1 z_3 \quad \cdots \quad \boxed{2},$$

$$z_3 = \frac{z_1}{z_2} \quad \cdots \quad \boxed{3}$$

ただし、 $\overline{z_1}$, $\overline{z_3}$ はそれぞれ z_1 , z_3 の共役複素数を表す。

- (1) ②と③を用いて、 z_2 が実数であることを示せ。
- (2) z_1 が実数である (z_1, z_2, z_3) の組をすべて求めよ。
- (3) z_1 が実数でない (z_1, z_2, z_3) の組をすべて求めよ。

 $oxed{4}$ 0 < t < 1 とし, $y = \sin x$ $(0 \le x \le t)$ で定まる曲線を C とする。点 $P(t,\sin t)$ を通り y 軸と平行な直線を ℓ_1 ,P を通り x 軸と平行な直線を ℓ_2 とする。 ℓ_1 ,x 軸,C で囲まれる図形が x 軸の周りに 1 回転してできる立体の体積を V(t) とする。 ℓ_2 ,y 軸,C で囲まれる図形が y 軸の周りに 1 回転してできる立体の体積を W(t) とする。このとき,次の間に答えよ。ただし,必要ならば

$$\lim_{t\to 0}\left(\frac{\cos t}{t^2}-\frac{\sin t}{t^3}\right)=-\frac{1}{3}$$

を用いてもよい。

- (1) *V*(*t*) を求めよ。
- (2) W(t) を求めよ。
- (3) 極限 $\lim_{t\to+0}\frac{W(t)}{\pi t^2\sin t}$ を求めよ。