(30点)

方程式 $x^2 + 2y^2 + 2z^2 - 2xy - 2xz + 2yz - 5 = 0$ をみたす正の整数の組 (x, y, z) をすべて求めよ。

(30 点)

正の整数 n に対し、多項式 $f_n(x)$ を、n=1 に対しては $f_1(x)=1$ とし、 $n\geq 2$ のときは $f_n(x)=(1+x)f_{n-1}(x^2)$ で帰納的に定める。 $g_n(x)=(1-x)f_n(x)$ とおくとき、 $g_n(x)$ を求めよ。また、 $n\to\infty$ のとき $f_n(x)$ が収束する実数 x の範囲を求めよ。

35 点)

複素数平面上の単位円に内接する正五角形で、1がその頂点の1つとなっているものを考える。この正五角形の辺を延長してできる直線の交点のうち、もとの正五角形の頂点以外のもので、実部、虚部がともに正であるものを z とする。

- (1) $\alpha=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とするとき, α を用いて z を表せ.ただし,i は虚数単位を表す.
- (2) 3 点 1, α^2 , z を通る円は、原点を通ることを示せ.

4

(30点)

負でない実数 a に対し、 $0 \le r < 1$ で、a - r が整数となる実数 r を $\{a\}$ で表す. すなわち、 $\{a\}$ は、a の小数部分を表す.

- (1) $\{n \log_{10} 2\} < 0.02$ となる正の整数 n を 1 つ求めよ.
- (2) 10 進法による表示で 2^n の最高位の数字が 7 となる正の整数 n を 1 つ求めよ. ただし, $0.3010 < \log_{10} 2 < 0.3011$, $0.8450 < \log_{10} 7 < 0.8451$ である.

5

(40 点)

行列 $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ および実数 s に対し、行列を用いて表された x、y に関する 2 つの連立一次方程式

(i)
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s \\ 1-s \end{pmatrix}$$

(ii)
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 5 - s \end{pmatrix}$$

について、次の条件(*)を考える。

- (*) 方程式 (i) には解が存在して, 方程式 (ii) には解が存在しない。 このとき, 次の間に答えよ。
- (1) 条件 (*) が成り立つとき, $\begin{pmatrix} a \\ c \end{pmatrix}$, $\begin{pmatrix} b \\ d \end{pmatrix}$ は,いずれも $\begin{pmatrix} s \\ 1-s \end{pmatrix}$ の実数 倍であることを示せ。
- (2) 条件(*)をみたす 2 つの連立方程式を作ることができるための s の条件を求めよ。

6

(35 点)

xy 平面上の単位円 C_1 と,条件 -1 $< a < -\frac{1}{2}$ をみたす実数 a に対し,点 R(a,0) を考える。 C_1 上の点 P における C_1 の接線と,R を通りこの接線と直交する直線との交点を Q とする。点 P が C_1 上を一周するときに,Q が描く曲線を C_2 とする。 C_2 上の点の x 座標の最小値が -1 より小さいことを示し, C_2 で囲まれる図形の面積を求めよ。

問題は,このページで終わりである。