1 (30 点)

正三角形 ABC の辺 AB 上に点 P_1 、 P_2 が,辺 BC 上に点 Q_1 、 Q_2 が,辺 CA 上に点 R_1 、 R_2 があり,どの点も頂点には一致していないとする. このとき三角形 $P_1Q_1R_1$ の重心と三角形 $P_2Q_2R_2$ の重心が一致すれば, $P_1P_2=Q_1Q_2=R_1R_2$ が成り立つことを示せ.

2 (35 点)

一辺の長さが 1 の正三角形 ABC の辺 AC 上に点 D をとり,線分 BD に沿ってこの三角形を折り曲げ,4 点 A,B,C,D を頂点とする四面体を作り,その体積を最大にすることを考える。体積が最大になるときの D の位置と,そのときの四面体の体積を求めよ。

35 点)

a,b を実数とする。3 次方程式 $x^3+ax^2+bx+1=0$ は 3 つの複素数からなる解 $\alpha_1,\alpha_2,\alpha_3$ をもち、相異なる i,j に対し $|\alpha_i-\alpha_j|=\sqrt{3}$ をみたしている。このような a,b の組をすべて求めよ。

(35 点)

 $\{a_n\}$ を正の数からなる数列とし,p を正の実数とする.このとき $a_{n+1}> \frac{1}{2}a_n-p$ をみたす番号 n が存在することを証明せよ.

| 極限 $\lim_{n\to\infty} \sum_{k=1}^{2n} (-1)^k \left(\frac{k}{2n}\right)^{100}$ を求めよ。

6 (30点)

7つの文字を並べた列 $a_1a_2\cdots a_7$ で、次の 3 つの条件をみたすものの総数を求めよ。

- (i) a_1, a_2, \dots, a_7 は A, B, C, D, E, F のいずれかである
- (ii) $i = 1, 2, \dots, 6$ に対し、 a_i と a_{i+1} は相異なる
- (iii) $i=1,2,\cdots,6$ に対し、 a_i と a_{i+1} は右図において線分で結ばれている