凸五角形 $A_nB_nC_nD_nE_n$ $(n=1,2,\cdots)$ が次の条件を満たしている.

 A_{n+1} は辺 C_nD_n の中点 B_{n+1} は辺 D_nE_n の中点 C_{n+1} は辺 E_nA_n の中点 D_{n+1} は辺 A_nB_n の中点 E_{n+1} は辺 B_nC_n の中点

下図は、五角形 $A_nB_nC_nD_nE_n$ と五角形 $A_{n+1}B_{n+1}C_{n+1}D_{n+1}E_{n+1}$ の位置関係を図示したものである. 以下の設問に答えよ.

- (1) 正の実数 α をうまく取ると、数列 $\left\{\alpha^n \middle| \frac{\overline{A_n B_n}}{n}\right\}$ が 0 でない実数に収束するようにできることを示せ.
- (2) 五角形 $A_nB_nC_nD_nE_n$ の 5 本の辺の長さの和を L_n 、5 本の対角線の長さの和を M_n とする. 極限値 $\lim_{n \to \infty} \frac{M_n}{L_n}$ を求めよ.

ただし、五角形が凸であるとは、その内角がすべて 180° 未満であることをいう。また、五角形の対角線とは、2 頂点を結ぶ線分で辺でないもののことである。

(20点)

実数 a,b が $0 \le a < 1$ および $0 \le b < 1$ を満たしている.このとき、次の条件(C)を満たす 2 つの整数 m,n が存在することを示せ.

(C) xy 平面において、点 (m+a,n+b) を中心とする半径 $\frac{1}{100}$ の円の内部分、 $y=x^2$ のグラフと共有点を持つ.

(20点)

n を自然数とする.投げたとき表裏の出る確率がそれぞれ $\frac{1}{2}$ ずつであるような硬貨を用意し、この硬貨を 2^n-1 回投げる.このとき、 $2^{n-1} \le k \le 2^n-1$ である自然数 k のうち少なくとも 1 つが次の条件 (*) を満たす確率を p_n とする.

(*) n 以下のすべての自然数 m について、 $\left[\frac{k}{2^{n-m}}\right]$ 回目の硬貨投げの結果は表である. ただし、実数 x に対して、[x] は x より大きくない最大の整数を表す.

例えば、 p_1 は硬貨を 1 回投げて表が出る確率を表すので、 $p_1=\frac{1}{2}$ である. p_2 は、硬貨を 3 回投げて、「1 回目と 2 回目がともに表」であるか「1 回目と 3 回目がともに表」であるかの 少なくとも一方が成り立つ確率を表すので、 $p_2=\frac{3}{6}$ である.

以下の設問に答えよ.

- $(1) p_{n+1}$ を p_n を用いて表せ.
- (2) $r_n = \frac{2}{p_n} n$ とする. すべての n に対して $r_n \ge 3$ が成り立つことを示せ.
- (3) すべての *n* に対して

$$\frac{2}{n+3+\log n} \le p_n \le \frac{2}{n+3}$$

が成り立つことを示せ.

(20点)

実数 a,b が $0 \le a < 1$ および $0 \le b < 1$ を満たしている.このとき、次の条件(C)を満たす 2 つの整数 m,n が存在することを示せ.

(C) xy 平面において、点 (m+a,n+b) を中心とする半径 $\frac{1}{100}$ の円の内部分、 $y=x^2$ のグラフと共有点を持つ.

問題は、このページで終わりである.