1

(20点)

 $0 \le x < 1$ の範囲で定義された連続関数 f(x) は f(0) = 0 であり、0 < x < 1 において何回でも微分可能で次を満たすとする。

$$f(x) > 0$$
, $\sin\left(\sqrt{f(x)}\right) = x$

この関数 f(x) に対して、0 < x < 1 で連続な関数 $f_n(x), n = 1, 2, 3, \cdots$ を以下のように定義する。

$$f_n(x) = \frac{d^n}{dx^n} f(x)$$

以下の設問に答えよ。

- (1) 関数 $-xf'(x) + (1-x^2)f''(x)$ は 0 < x < 1 において x によらない定数値をとることを示せ。
 - (2) $n=1,2,3,\cdots$ に対して、極限 $a_n=\lim_{x\to +0}f_n(x)$ を求めよ。
- (3) 極限 $\lim_{N\to\infty}\left(\sum_{n=1}^N\frac{a_n}{n!2^{\frac{n}{2}}}\right)$ は存在することが知られている。この事実を認めた上で、その極限値を小数第 1 位まで確定せよ。

(20点)

次の 3 つのルール (i), (ii), (iii) にしたがって三角形 ABC の頂点上でコマを動かすことを考える。

- (i) 時刻 0 においてコマは頂点 A に位置している。
- (ii) 時刻 0 にサイコロを振り、出た目が偶数なら時刻 1 で頂点 B に、出た目が奇数なら時刻 1 で頂点 C にコマを移動させる。
- (iii) $n=1,2,3,\cdots$ に対して、時刻 n にサイコロを振り、出た目が 3 の倍数でなければ時刻 n+1 でコマを時刻 n-1 に位置していた頂点に移動させ、出た目が 3 の倍数であれば時刻 n+1 でコマを時刻 n-1 にも時刻 n にも位置していなかった頂点に移動させる。

時刻 n においてコマが頂点 A に位置する確率を p_n とする。以下の設問に答えよ。

- $(1) p_2, p_3$ を求めよ。
- (2) $n = 1, 2, 3, \cdots$ に対して p_{n+1} を p_{n-1} と p_n を用いて表せ。
- (3) 極限値 $\lim_{n\to\infty} p_n$ を求めよ。

3

(20点)

整数 k,n は $0 \le k < n$ を満たすとする。以下の設問に答えよ。

(1) $f(x) = x^n,$ $g(x) = x^k$ とする。 $1 \leq x < y$ に対して、次の不等式が成り立つことを示せ。

$$\left| \frac{g(x) - g(y)}{f(x) - f(y)} \right| < \frac{1}{x}$$

(2) f(x), g(x) を実数係数の整式で、f(x) の次数を n とし、g(x) の次数を k 以下とする。 $f(x_0)$ が整数となるすべての実数 x_0 に対して $g(x_0)$ も整数となるとき、g(x) は x によらず一定の整数値をとることを示せ。

4

(20点)

四面体 ABCD の面および内部から一直線上にない 3 点 P,Q,R を選ぶ。このとき、三角 形 PQR の面積は四面体 ABCD の 4 つの面の面積のうち最大のものを超えないことを示せ。

問題は,このページで終わりである。