〔1〕(配点50点)

次の問いに答えよ. ただし, $\lim_{x\to\infty}\frac{\log x}{x}=0$ であること,また,e は自然対数の底で,e<3 であることを用いてよい.

- (1) 自然数 n に対して,方程式 $\frac{\log x}{x} = \frac{1}{3n}$ は x>0 の範囲にちょうど 2 つの実数解をもつことを示せ.
- (2) (1) の実数解を α_n , β_n ($\alpha_n < \beta_n$) とするとき, $1 < \alpha_n < e^{\frac{1}{n}}$, $ne < \beta_n$ が成り立つことを示せ. また, $\lim_{n \to \infty} \alpha_n$ を求めよ.

〔2〕(配点50点)

 \triangle OAB において,辺 OB の中点を M ,辺 AB を $\alpha:1-\alpha$ に内分する 点を P とする.ただし, $0<\alpha<1$ とする.線分 OP と AM の交点を Q とし,Q を通り,線分 AM に垂直な直線が,辺 OA またはその延長と交わる点を R とする. $\overrightarrow{OA}=\overrightarrow{a}$, $\overrightarrow{OB}=\overrightarrow{b}$ として,次の問いに答えよ.

- (1) ベクトル \overrightarrow{OP} と \overrightarrow{OQ} を \overrightarrow{a} , \overrightarrow{b} および α を用いて表せ.
- (2) $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$, \angle AOB = θ で $\cos \theta = \frac{1}{6}$ とする. このとき、ベクトル \overrightarrow{OR} を \overrightarrow{a} と α を用いて表せ.
- (3) (2) の条件のもとで、点 R が辺 OA の中点であるときの α の値を求めよ.

〔3〕(配点50点)

2つの数列 $\{a_n\},\,\{b_n\}$ は, $a_1=b_1=1$ および, 関係式

$$a_{n+1} = 2a_n b_n$$

$$b_{n+1} = 2a_n^2 + b_n^2$$

をみたすものとする.

- (1) $n \ge 3$ のとき, a_n は 3 で割り切れるが, b_n は 3 で割り切れないことを示せ.
- (2) $n \ge 2$ のとき, a_n と b_n は互いに素であることを示せ.

〔4〕(配点50点)

関数 $f(x)=\left|\sin x-\frac{1}{2}\right|-\frac{1}{2}$ を考える。ただし, $-\pi \le x \le \pi$ とする。さらに, $0 \le a \le \frac{\pi}{2}$ に対して,

$$F(a) = \int_0^a f(x)f\left(x - \frac{\pi}{2}\right)dx$$

とする。このとき次の問いに答えよ。

- (1) f(x) = 0 となる x を求めよ。
- (2) 関数 y = f(x) のグラフの概形を描け。
- (3) F(a) を求めよ。

〔5〕(配点50点)

区間 [a,b] が関数 f(x) に関して不変であるとは, $a \le x \le b$ ならば, $a \le f(x) \le b$ が成り立つこととする。f(x) = 4x(1-x) とするとき,次の問いに答えよ。

- (1) 区間 [0,1] は関数 f(x) に関して不変であることを示せ。
- (2) 0 < a < b < 1 とする。このとき,区間 [a,b] は関数 f(x) に関して不変ではないことを示せ。