〔1〕(配点50点)

2つの曲線 $C_1: y=ax^2, C_2: x^2+(y-p)^2=r^2$ が異なる 2 点で接するとする。

ただしa, p, rを正の定数とする。

- (1) p を a と r の式で表せ。また,曲線 C_1 と C_2 の接点の x 座標 q を a と r の式で表せ。ただし q>0 とする。
- (2) ar=1 のとき、曲線 C_1 と C_2 によって囲まれた部分の面積を求めよ。

〔2〕(配点50点)

 $A \ \ \, E \ \, B \ \, O \ \, 2$ つの袋があり、A の袋には赤玉が $2 \ \, Imu \ \, Im$

- (1) A の袋から 3 個の玉を同時に取り出すとき、赤玉が 2 個、白玉が 1 個である確率 P_1 を求めよ.
- (2) A の袋から 3 個の玉を取り出し、それらを B の袋に入れる。その後 B の袋から 2 個の玉を同時に取り出すとき、赤玉が 1 個、白玉が 1 個である確率 P_2 を求めよ。
- (3) 確率 P_2 が最大となる m と n の値を求めよ.

〔3〕(配点50点)

数列 $\{a_n\}$ を

$$a_1 = 1$$
, $a_{n+1} = \frac{2a_n}{5a_n + c}$ $(n = 1, 2, \dots)$

と定める。ただし、c は $0 \le c < 2$ を満たす定数とする。

$$(1) b_n = \frac{1}{a_n} とおくとき,$$

$$b_{n+1} - pb_n = q \quad (n = 1, 2, \cdots)$$

となる定数 p,q を c の式で表せ。

- (2) a_n を n と c の式で表せ。
- (3) $\lim_{n\to\infty} a_n$ を c の式で表せ。

〔4〕(配点50点)

平面上に異なる n 個の点 $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$ を考える。ただし, $x_k>0$ $(k=1,2,\cdots,n)$ とする。また,次の関数 f(a) の最小値を与える a を a_0 とする。

$$f(a) = \sum_{k=1}^{n} (ax_k - y_k)^2$$

- (1) a₀ を求めよ。
- (2) n 個の点のいずれも、直線 $y = a_0 x$ 上にはないものとする。このとき、n 個の点のうち少なくとも 1 点は直線 $y = a_0 x$ の上側にあることを示せ。
- (3) $x_k = bk$, $y_k = c(k = 1, 2, \dots, n)$ とする。ここで,b, c は正の定数である。このとき,n 個の点のうちの 1 点が直線 $y = a_0x$ 上にあるための条件は,b, c によらない条件であることを示せ。

〔5〕(配点50点)

行列

$$A = \begin{pmatrix} 15 & 6 \\ 6 & 10 \end{pmatrix}$$

について、以下の問いに答えよ。

(1) 方程式

$$\begin{cases} 15x + 6y = \lambda x \\ 6x + 10y = \lambda y \end{cases}$$

が x = y = 0 以外の解をもつときの λ の値を 2 つ求めよ。

(2) (1) で求めた λ の 2 つの値を α , $\beta(\alpha > \beta)$ とするとき,

$$AT = T \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$

を満たし、逆行列をもつ行列 T を 1 つ求め、その逆行列 T^{-1} を求めよ。

(3) A^n を求めよ。

$$\begin{pmatrix} x \\ y \end{pmatrix} を \begin{pmatrix} 0 \\ 0 \end{pmatrix} でない列ベクトルとし,$$

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix} \quad (n = 1, 2, \cdots)$$

とする。このとき,

$$\lim_{n\to\infty}\frac{y_n}{x_n}$$

を求めよ。ただし、 $x_n \neq 0$ $(n = 1, 2, \cdots)$ と仮定する。