〔1〕(配点50点)

直線 y=ax (ただし a は正の実数) を l とし、曲線 y=f(x) (ただし $x \ge 0$) を C とする。曲線 C が直線 l の下側にあり、曲線 C 上の点 (t,f(t)) と直線 l との距離が at^2 で表されるとき、以下の問いに答えよ。

- (1) 関数 f(x) を求めよ。
- (2) 曲線 C と x 軸で囲まれた図形を, x 軸のまわりに回転させてできる 回転体の体積 V を求めよ。
- (3) V が最大となるように a の値を定めよ。

〔2〕(配点50点)

鋭角三角形 ABC において, $\overrightarrow{a}=\overrightarrow{CA}$, $\overrightarrow{b}=\overrightarrow{CB}$ とする.以下の問いに答えよ.

- (1) 線分 AC を 1:2 に内分する点を P, 線分 BC を 2:3 に内分する点を Q とする.ここで線分 AC の長さを |AC| で表すとして,|AC|=12 および $|BC|=5\sqrt{5}$ とする.このとき,|AQ|>|BP| であることを示せ.
- (2) n を正の整数, r を 0 < r < 1 をみたす実数とする. 線分 AC を 1-r:r に内分する点を E, 線分 BC を $1-r^n:r^n$ に内分する点を F とし,線分 AF と線分 BE の交点を R とする. \overrightarrow{CR} を \overrightarrow{d} , \overrightarrow{b} , n,r を用いて表せ.
- (3) (2) において, n を固定して $r \to 1$ としたとき, 交点 R は辺 AB 上のある点 S に近づく. このとき, |AS| : |SB| を求めよ.

〔3〕(配点50点)

点 $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ が,行列を用いて次のように与えられている。

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 1 \\ \frac{4}{9} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix}, \quad (n = 1, 2, 3, \dots)$$

以下の問いに答えよ。

$$(1) \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \, \text{のときの} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \, \text{を} \, P_n \, \text{とする。点} \, P_n \, \text{の座標を求めよ。}$$

$$(2)$$
 $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ のときの $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ を Q_n とする。点 Q_n の座標を求めた。

$$(3) \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} k \\ 0 \end{pmatrix} \quad (ただし k は正の実数) \quad \text{のときの} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \quad \text{を} \quad R_n \text{ とす}$$
る。点 R_n の座標を求めよ。

(4) 点 R_n と点 R_{n-1} の間の距離を $|R_n R_{n-1}|$ とする。

$$\sum_{n=1}^{\infty} |R_n R_{n-1}|$$

を求めよ。

〔4〕(配点50点)

表と裏の出る確率が $\frac{1}{2}$ ずつの硬貨を投げ、表なら 1 点、裏なら 0 点とする. k,n を正の整数として、以下の問いに答えよ.

- (1) 硬貨を繰り返し投げ,得点の合計が 3 点に達したら終了することにする。 ちょうど 5 回目で終了する確率はいくらか。 また,ちょうど n 回目で終了する確率を q_n とするとき, $\sum_{i=1}^n q_i = 1 \frac{n^2 + n + 2}{2^{n+1}}$ を証明せよ。
- (2) 硬貨を繰り返し投げ、得点の合計が k 点に達したら終了することにする。 ちょうど n 回目で終了する確率を $p_k(n)$ とする。 k を固定したまま n を動かすときの $p_k(n)$ の最大値を求めよ。

〔5〕(配点50点)

n,N を正の整数とする. 以下の問いに答えよ.

(1) k を正の定数とし、関数 f(x) は f(x) = f(x+k) をみたすとする. このとき、

$$T_n = \int_{k(n-1)}^{kn} e^{-x} f(x) dx, \quad S_N = \sum_{n=1}^{N} T_n$$

とおく. T_n と S_N を T_1 で表せ.

(2) (1) において $f(x) \ge 0$ とする. このとき, k 以上の実数 z に対して

$$S_n \leq \int_0^z e^{-x} f(x) dx < S_{N+1}$$

が成立するような N を求めよ. さらに、この不等式を用いて極限

$$\lim_{z \to \infty} \int_0^z e^{-x} f(x) dx$$

が存在することを示し、この極限を T_1 で表せ.

(3) $h(x)=e^{-x}|\cos\pi x|$ とする. y=h(x), x 軸, y 軸および x=z で囲まれた部分の面積を V(z) とおく. $\lim_{z\to\infty}V(z)$ を求めよ.