〔1〕(配点50点)

 $a > 0, b > 0, 0 < \alpha < 1, 0 < \beta < 1$ として,以下の問いに答えよ。

(1) 初項 $a_1 = a$ と漸化式

$$a_{n+1} = \alpha a_n \quad (n = 1, 2, 3, \cdots)$$

で定義された数列 $\{a_n\}$ がある。このとき、

$$x_n = \log_{10} a_n \quad (n = 1, 2, 3, \cdots)$$

により定まる数列 $\{x_n\}$ の一般項を n, α , a を用いて表せ。

(2) 初項 $b_1 = b$ と漸化式

$$b_{n+1} = \beta b_n^2$$
 $(n = 1, 2, 3, \cdots)$

で定義された数列 $\{b_n\}$ がある。このとき、

$$y_n = \log_{10} b_n \quad (n = 1, 2, 3, \cdots)$$

により定まる数列 $\{y_n\}$ の一般項を n, β, b を用いて表せ。

(3) a = b = 1 のとき,

$$\lim_{n \to \infty} \frac{x_{n+1}}{y_{n+1}} = 0$$

を証明せよ。

〔2〕(配点50点)

以下の問いに答えよ。

- (1) 原点のまわりの角 θ の回転移動を表す行列を R_{θ} とする。回転 R_{θ} に よって点 (2,1) に移される点 (a,b) を求めよ。
- (2) 原点を通り,傾き $\tan\theta\left(0<\theta<\frac{\pi}{2}\right)$ の直線を l とする。また,点 P(x,y) を直線 l に関して対称移動した点を P'(x',y') とする。このとき,x' と y' を x,y および θ を用いて表し,この移動を表す行列 A_{θ} を求めよ。
- (3) x 軸に関する対称移動を表す行列を B とする。このとき, $R_{\theta}BR_{\theta}^{-1}=A_{\theta}$ となることを示せ。
- (4) $0<\alpha<\frac{\pi}{2},\,0<\beta<\frac{\pi}{2},\,0<\gamma<\frac{\pi}{2}$ とする。2 つの行列の積 $A_{\alpha}A_{\beta}$ はある角の回転移動を表すことを示せ。また3 つの行列の積 $A_{\alpha}A_{\beta}A_{\gamma}$ によって表される移動は決して回転移動を表さないことを示せ。

〔3〕(配点50点)

座標平面上の楕円 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ について,以下の問いに答えよ。

- (1) x 座標が小さい方の焦点 F を極とし, F から x 軸の正の方向へ向かう 半直線を始線とする極座標 (r,θ) で表された楕円の極方程式 $r=f(\theta)$ を求めよ。
- (2) 座標平面上の原点 O(0,0) と楕円上の 2 点 P_1 , P_2 について,線分 OP_1 と線分 OP_2 とが互いに直交する位置にあるとする。線分 OP_1 および OP_2 の長さをそれぞれ r_1 , r_2 とするとき, $\frac{1}{r_1^2} + \frac{1}{r_2^2}$ の値は定数となる ことを示せ。

〔4〕(配点50点)

関数 $f(x) = -x \sin x \ (0 \le x \le \pi)$ について、以下の問いに答えよ。

- (1) $0 < x < \pi$ の範囲で,方程式 f''(x) = 0 がただ 1 つの解 x = a をもつことを示せ。
- (2) 上の (1) で存在が示された a に対して, $a < x < \pi$ の範囲で,方程式 f'(x) = -1 がただ 1 つの解 x = b をもつことを示し,その値 b を求 めよ。また,曲線 y = f(x) 上の点 (b, f(b)) における法線 m の方程 式を求めよ。
- (3) 上の (2) で求めた法線 m と曲線 y = f(x) および y 軸とで囲まれた図形を, x 軸のまわりに回転させてできる回転体の体積 V を求めよ。

〔5〕(配点50点)

50 円と 100 円の硬貨が 3 枚ずつの計 6 枚と,さいころが 1 個ある。これらの硬貨 6 枚とさいころ 1 個を同時に投げて,表が出た硬貨の合計額にさいころの目の数 n から 2 を引いた数の絶対値 |n-2| をかけ合わせた賞金をもらえるものとする。たとえば,硬貨 6 枚すべてが表となり,さいころの目が 6 となった場合,表が出た硬貨の合計額 450 円を 4 倍した 1800 円を賞金としてもらえる。このとき,以下の問いに答えよ。

- (1) 賞金を全くもらえない確率を求めよ。
- (2) もらえる賞金が500円以上となる確率を求めよ。
- (3) もらえる賞金の期待値を求めよ。