〔1〕(配点50点)

以下の問いに答えよ。

- (1) $0 \le x \le \frac{\pi}{2}$ のとき、 $\sin x x \le 0$ が成り立つことを示せ。 (2) $0 \le x \le \frac{\pi}{2}$ のとき、 $\sin x x + ax^3 \ge 0$ が成り立つような正の数 a を 1つ定めよ。
- (3) $0 < |x| \le \frac{\pi}{2}$ のとき,

$$\left| \frac{\sin x}{x} - 1 \right| \le ax^2$$

が成り立つことを示せ。ただし、a は (2) で定めた値とする。

(4) 曲線 $y = \sin x$ と直線 y = x および $x = \frac{\pi}{2}$ で囲まれた図形を x 軸の まわりに1回転してできる回転体の体積を求めよ。

〔2〕(配点50点)

0 を原点とする座標空間において、3 点 A(a,0,0)、B(0,a,0)、C(0,0,1)が定める平面を α とする。ただし、a は正の定数とする。このとき、以下の問いに答えよ。

- (1) 平面 α 上の任意の点 P に対し,CP = sCA + tCB を満たす実数 s、 t が存在する。点 P の座標を a、s、t を用いて表せ。
- (2) 原点 O から平面 α に垂線 OH を下ろす。点 H の座標を a を用いて表せ。
- (3) a=1 とする。平面 α 上で点 A を中心とする半径 1 の円を考え,その 円周上に点 Q を $\angle QAB=\theta$ となるように取る。ただし, $0<\theta<\pi$ とし,点 Q の z 座標は正とする。点 Q の座標を θ を用いて表せ。

〔3〕(配点50点)

2 個のサイコロを投げて、xy 平面上の点 P を移動させる次の試行を考える。

試行:2 個のサイコロを同時に投げて,大きい目の数を X、小さい目の数を Y とする。ただし,同じ目が出た場合は,X、Y の両者をその目の数とする。このとき,

- X が 3 以上なら、点 P を x 軸の正の方向に 1 動かし、
- Y が 3 以上なら、点 P をさらに y 軸の正の方向に 1 動かす。

この試行を繰り返して点 P を原点 (0,0) から順に動かしていくとき,以下の問いに答えよ。

- (1) 1 回目の試行終了時に点 P が (1,0) に移動している確率を求めよ。
- (2) 2 回目の試行終了時に点 P が (1,1) に移動している確率を求めよ。
- (3) n 回目の試行終了時に点 P が (n, n-1) に移動している確率を求めよ。ただし、n は自然数である。

〔4〕(配点50点)

数列 $\{a_n\}$ を次式で定義する。

$$a_n = \int_c^1 nx^{n-1} \left(\log \left(\frac{1}{x} \right) \right)^n dx \quad (n = 1, 2, 3, \dots)$$

ただし, c は 0 < c < 1 を満たす定数とする。このとき,以下の問いに答えよ。

- (1) 数列 $\{a_n\}$ の初項 a_1 および第 2 項 a_2 を求めよ。
- (2) $0 < x \le 1$ のとき, $0 \le x \log\left(\frac{1}{x}\right) < \frac{1}{2}$ が成り立つことを示せ。
- (3) $a_n < \frac{n}{2^n} \log \left(\frac{1}{c}\right)$ $(n = 1, 2, 3, \cdots)$ が成り立つことを示せ。
- (4) $\lim_{n\to\infty} a_n = 0$ を示せ。

〔5〕(配点50点)

数直線上に 2 点 X_1 、 X_2 を取り,それぞれの座標を a_1 および a_2 とする。ただし, $0 < a_1 < a_2$ とする。線分 X_1X_2 を s:1-s に内分する点を X_3 、線分 X_2X_3 を s:1-s に内分する点を X_4 、同様に自然数 k に対して線分 X_kX_{k+1} を s:1-s に内分する点を X_{k+2} とする。ただし,0 < s < 1 とする。このとき,以下の問いに答えよ。

(1) 2 点 X_{2n-1} 、 X_{2n} の座標を並べてベクトル $\begin{pmatrix} a_{2n-1} \\ a_{2n} \end{pmatrix}$ で表し、

$$\begin{pmatrix} a_{2n+1} \\ a_{2n+2} \end{pmatrix} = A \begin{pmatrix} a_{2n-1} \\ a_{2n} \end{pmatrix}$$

と書くとき、行列 A を s を用いて表せ。ただし、n は自然数である。

(2) 行列 P を

$$P = \begin{pmatrix} 1 & 1 \\ s - 1 & 1 \end{pmatrix}$$

とし、行列 B を $B = P^{-1}AP$ とする。行列 B を求めよ。

- (3) 座標 a_{2n+1} および a_{2n+2} を n、s、 a_1 、 a_2 を用いて表せ。
- (4) 点 X_k の座標 a_k の極限 $\lim_{k\to\infty} a_k$ を求めよ。