〔1〕(配点50点)

座標空間における直方体 ABCD-EFGH において,点 A,B,C,D の座標をそれぞれ (0,0,2), (2,0,2), (2,4,2), (0,4,2), 点 E,F,G,H の座標をそれぞれ (0,0,0), (2,0,0), (2,4,0), (0,4,0) とする。また,線分 AD をs:(1-s) に内分する点を I, 線分 FG を t:(1-t) に内分する点を J とする。ただし,0 < s < 1, 0 < t < 1 である。このとき,以下の問いに答えよ。

- (1) 線分 AJ と平面 BEI の交点を P とし、ベクトル \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE} を それぞれ \overrightarrow{b} , \overrightarrow{d} , \overrightarrow{e} としたとき、ベクトル \overrightarrow{AP} を \overrightarrow{b} , \overrightarrow{d} , \overrightarrow{e} , s, t で 表せ。
- (2) 平面 BEI に対して垂直なベクトルを求めよ。ただし,その x 成分は 1 とする。
- (3) ベクトル \overrightarrow{AP} が平面 BEI に対して垂直となるとき, s を t で表せ。

〔2〕(配点50点)

チームAとBが複数回試合を行って優勝チームを決めるものとする。ただし、いずれの試合においても、引き分けはないものとし、チームAが勝つ確率は q (0 < q < 1) であり、各試合の勝敗は互いに独立に決まるとする。このとき、次の2種類のルールを考える。

ルール1: 最大3回試合を行い、先に2勝したチームを優勝とする。

ルール2: どちらか一方が2連勝するまで試合を繰り返し,2連勝したチームを優勝とする。

以下の問いに答えよ。

- (1) ルール 1 を採用した場合に、チーム A が優勝する確率 $P_1(q)$ を q で表せ。
- (2) ルール 2 を採用した場合に、チーム A が優勝する確率 $P_2(q)$ を q で表せ。
- (3) $P_1(q) \ge P_2(q)$ となる条件を求めよ。

〔3〕(配点50点)

x,y を 0 以上 1 以下の実数とする。このとき,以下の問いに答えよ。ただし,a,b,c,d が実数のとき, $\max(a,b)$ は a,b のうちの最大の数を表し, $\max(a,b,c,d)$ は a,b,c,d のうちの最大の数を表す。

- (1) max(xy, 1-xy) の最小値を求めよ。
- (2) max(xy, 1-xy, x, y) の最小値を求めよ。

〔4〕(配点50点)

数列 $\{x_n\}$ の第 n 項を $x_n = r^{n-1}$ で定める。このとき,正の実数 x に対して定義された関数 $f(x) = x^{-\alpha}$ を用いて,2 つの数列 $\{a_n\}$ と $\{b_n\}$ を,それぞれ

$$a_n = f(x_n)(x_{n+1} - x_n), \quad b_n = f(x_{n+1})(x_{n+1} - x_n)$$

で定める。ただし、 α は正の定数、r は 1 より大きい実数とする。以下の問いに答えよ。

- (1) α の値に応じて級数 $a(r)=\sum_{n=1}^{\infty}a_n$ の収束,発散を調べ,収束するときは和を求めよ。
- (2) α の値に応じて級数 $b(r)=\sum_{n=1}^{\infty}b_n$ の収束,発散を調べ,収束するとき は和を求めよ。
- (3) 極限 $\lim_{r\to 1+0} a(r)$ と $\lim_{r\to 1+0} b(r)$ のそれぞれについて、極限が有限な値である場合、その値を求めよ。

〔5〕(配点50点)

座標平面上の直線 l:y=-1 と点 F(0,2) を考える。以下の問いに答えよ。

- (1) 直線 l 上を動く点を D とする。点 P を、線分 DP と線分 FP の長さが等しく、かつ線分 DP が y 軸と平行となるように定める。このとき、点 P の軌跡 C を求めよ。
- (2) a を実数とする。点 F を通り,傾きが a の直線 m:y=ax+2 を考える。直線 m と軌跡 C の交点が 2 つあることを示し,それぞれの座標を求めよ。ただし,2 つの交点を A,B とし,点 A の x 座標が点 B の x 座標より小さいとする。
- (3) 点 A,B における軌跡 C の接線をそれぞれ l_A,l_B とする。接線 l_A,l_B は互いに垂直であることを示せ。
- (4) 接線 l_A , l_B の交点を通り,y 軸に平行な直線を n とする。直線 n は線分 AB と,点 A, B とは異なる点で交わることを示せ。また,軌跡 C,直線 m,直線 n によって囲まれる図形のうち,直線 n の左側にある部分の面積を S_A とし,右側にある部分の面積を S_B とする。このとき, S_A と S_B の比を求めよ。