〔1〕(配点50点)

この問題の解答は、解答紙 26 の定められた場所に記入しなさい。

[問題]

座標平面上の曲線 C_1 、 C_2 をそれぞれ

$$C_1: y = \log x \quad (x > 0)$$

$$C_2: y = (x-1)(x-a)$$

とする。ただし、a は実数である。n を自然数とするとき、曲線 C_1 、 C_2 が 2 点 P, Q で交わり、P, Q の x 座標はそれぞれ 1, n+1 となっている。また、曲線 C_1 と直線 PQ で囲まれた領域の面積を S_n 、曲線 C_2 と直線 PQ で囲まれた領域の面積を T_n とする。このとき、以下の問いに答えよ。

- (1) a を n の式で表し、a > 1 を示せ。
- (2) S_n と T_n をそれぞれ n の式で表せ。
- (3) 極限値 $\lim_{n\to\infty} \frac{S_n}{n\log T_n}$ を求めよ。

〔2〕(配点50点)

この問題の解答は、解答紙 27 の定められた場所に記入しなさい。

【問題】

t を 0 < t < 1 を満たす実数とする。面積が 1 である三角形 ABC において,辺 AB、BC、CA をそれぞれ 2:1、t:1-t、1:3 に内分する点を D、E、F とする。また,AE と BF、BF と CD、CD と AE の交点を それぞれ P、Q、R とする。このとき,以下の問いに答えよ。

- (1) 3 直線 AE、BF、CD が 1 点で交わるときの t の値 t_0 を求めよ。 以下, t は $0 < t < t_0$ を満たすものとする。
- (2) AP = kAE、 $CR = \ell CD$ を満たす実数 k、 ℓ をそれぞれ求めよ。
- (3) 三角形 BCQ の面積を求めよ。
- (4) 三角形 PQR の面積を求めよ。

〔3〕(配点50点)

この問題の解答は、解答紙 28 の定められた場所に記入しなさい。

[問題]

座標平面上で円 $x^2+y^2=1$ に内接する正六角形で、点 $P_0(1,0)$ を 1 つの頂点とするものを考える。この正六角形の頂点を P_0 から反時計まわりに順に P_1, P_2, P_3, P_4, P_5 とする。ある頂点に置かれている 1 枚のコインに対し、1 つのサイコロを 1 回投げ、出た目に応じてコインを次の規則にしたがって頂点上を動かす。

- (i) 1 から 5 までの目が出た場合は、出た目の数だけコインを反時計まわりに動かす。例えば、コインが P_4 にあるときに 4 の目が出た場合は P_2 まで動かす。
- (ii) 6 の目が出た場合は、x 軸に関して対称な位置にコインを動かす。ただし、コインが x 軸上にあるときは動かさない。例えば、コインが P_5 にあるときに 6 の目が出た場合は P_1 に動かす。

はじめにコインを 1 枚だけ P_0 に置き、1 つのサイコロを続けて何回か投げて、1 回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える。以下の問いに答えよ。

- (1) 2 回サイコロを投げた後に、コインが P_0 の位置にある確率を求めよ。
- (2) 3 回サイコロを投げた後に、コインが P_0 の位置にある確率を求めよ。
- (3) n を自然数とする。n 回サイコロを投げた後に、コインが P_0 の位置 にある確率を求めよ。

〔4〕(配点50点)

この問題の解答は、解答紙 29 の定められた場所に記入しなさい。

【問題】

自然数 n に対して, 10^n を 13 で割った余りを a_n とおく。 a_n は 0 から 12 までの整数である。以下の問いに答えよ。

- (1) a_{n+1} は $10a_n$ を 13 で割った余りに等しいことを示せ。
- $(2) a_1, a_2, \cdots, a_6$ を求めよ。
- (3) 以下の3条件を満たす自然数Nをすべて求めよ。
 - (i) N を十進法で表示したとき 6 桁となる。
 - (ii) N を十進法で表示して、最初と最後の桁の数字を取り除くと 2016 となる。
 - (iii) N は 13 で割り切れる。

〔5〕(配点50点)

この問題の解答は、解答紙 30 の定められた場所に記入しなさい。

[問題]

以下の問いに答えよ。

(1) $\theta \approx 0 \le \theta < 2\pi$ を満たす実数、i を虚数単位とし、z を $z = \cos \theta + i \sin \theta$ で表される複素数とする。このとき、整数 n に対して次の式を証明 せよ。

$$\cos n\theta = \frac{1}{2} \left(z^n + \frac{1}{z^n} \right), \quad \sin n\theta = -\frac{i}{2} \left(z^n - \frac{1}{z^n} \right)$$

(2)次の方程式を満たす実数 x $(0 \le x < 2\pi)$ を求めよ。

$$\cos x + \cos 2x - \cos 3x = 1$$

(3) 次の式を証明せよ。

$$\sin^2 20^\circ + \sin^2 40^\circ + \sin^2 60^\circ + \sin^2 80^\circ = \frac{9}{4}$$