〔1〕(配点50点)

この問題の解答は、解答紙 26 の定められた場所に記入しなさい。

[問題]

定数 a>0 に対し、曲線 $y=a\tan x$ の $0 \le x < \frac{\pi}{2}$ の部分を C_1 、曲線 $y=\sin 2x$ の $0 \le x < \frac{\pi}{2}$ の部分を C_2 とする。以下の問いに答えよ。

- (1) C_1 と C_2 が原点以外に交点をもつための a の条件を求めよ。
- (2) a が (1) の条件を満たすとき、原点以外の C_1 と C_2 の交点を P とし、 P の x 座標を p とする。P における C_1 と C_2 のそれぞれの接線が 直交するとき、a および $\cos 2p$ の値を求めよ。
- (3) a が (2) で求めた値のとき、 C_1 と C_2 で囲まれた図形の面積を求めよ。

〔2〕(配点50点)

この問題の解答は、解答紙 27 の定められた場所に記入しなさい。

【問題】

2 つの定数 a > 0 および b > 0 に対し、座標空間内の 4 点を

$$A(a,0,0), B(0,b,0), C(0,0,1), D(a,b,1)$$

と定める。以下の問いに答えよ。

- (1) 点 A から線分 CD におろした垂線と CD の交点を G とする。G の 座標を a,b を用いて表せ。
- (2) さらに、点 B から線分 CD におろした垂線と CD の交点を H とする。 \overrightarrow{AG} と \overrightarrow{BH} がなす角を θ とするとき、 $\cos\theta$ を a,b を用いて表せ。

〔3〕(配点50点)

この問題の解答は、解答紙 28 の定められた場所に記入しなさい。

【問題】

初項 $a_1 = 1$ 、公差 4 の等差数列 $\{a_n\}$ を考える。以下の問いに答えよ。

- (1) $\{a_n\}$ の初項から第 600 項のうち、7 の倍数である項の個数を求めよ。
- (2) $\{a_n\}$ の初項から第 600 項のうち、 7^2 の倍数である項の個数を求めよ。
- (3) 初項から第n 項までの積 $a_1a_2\cdots a_n$ が 7^{45} の倍数となる最小の自然数n を求めよ。

〔4〕(配点50点)

この問題の解答は、解答紙 29 の定められた場所に記入しなさい。

[問題]

赤玉 2 個、青玉 1 個、白玉 1 個が入った袋が置かれた円形のテーブルの周りに A、B、C の 3 人がこの順番で時計回りに着席している。3 人のうち、ひとりが袋から玉を 1 個取り出し、色を確認したら袋にもどす操作を考える。1 回目は A が玉を取り出し、次のルール (a)、(b)、(c) に従って勝者が決まるまで操作を繰り返す。

- (a) 赤玉を取り出したら、取り出した人を勝者とする。
- (b) 青玉を取り出したら、次の回も同じ人が玉を取り出す。
- (c) 白玉を取り出したら、取り出した人の左隣りの人が次の回に玉を取り 出す。

A、B、C の 3 人が n 回目に玉を取り出す確率をそれぞれ a_n 、 b_n 、 c_n $(n=1,2,\cdots)$ とする。ただし、 $a_1=1$ 、 $b_1=c_1=0$ である。以下の問いに答えよ。

- (1) Aが4回目に勝つ確率と7回目に勝つ確率をそれぞれ求めよ。
- (2) $d_n = a_n + b_n + c_n \ (n = 1, 2, \cdots)$ とおくとき、 d_n を求めよ。
- (3) 自然数 $n \ge 3$ に対し、 a_{n+1} を a_{n-2} と n を用いて表せ。

〔5〕(配点50点)

この問題の解答は、解答紙 30 の定められた場所に記入しなさい。

【問題】

2 つの複素数 $\alpha=10000+10000i$ と $w=\frac{\sqrt{3}}{4}+\frac{1}{4}i$ を用いて,複素数平面上の点 $P_n(z_n)$ を $z_n=\alpha w^n$ $(n=1,2,\cdots)$ により定める。ただし,i は虚数単位を表す。 2 と 3 の常用対数を $\log_{10}2=0.301$ 、 $\log_{10}3=0.477$ として,以下の問いに答えよ。

- (1) z_n の絶対値 $|z_n|$ と偏角 $\arg z_n$ を求めよ。
- (2) $|z_n| \le 1$ が成り立つ最小の自然数 n を求めよ。
- (3) 下図のように、複素数平面上の $\triangle ABC$ は線分 AB を斜辺とし、点 $C\left(\frac{i}{\sqrt{2}}\right)$ を一つの頂点とする直角二等辺三角形である。なお A、B を表す複素数の虚部は負であり、原点 O と 2 点 A、B の距離はともに 1 である。点 P_n が $\triangle ABC$ の内部に含まれる最小の自然数 n を求めよ。

