〔1〕(配点50点)

座標平面において,原点を中心とする半径 2 の円 C_1 と,点 $\left(-\frac{1}{3},0\right)$ を中心とする半径 1 の円 C_2 がある.実数 t が $0 < t < \pi$ の範囲で動くとき, C_1 上の 2 点 $P(2\cos t, 2\sin t)$, $Q(2\cos(2t), 2\sin(2t))$,および C_2 上の点 $R\left(-\frac{1}{3} + \cos t, \sin t\right)$ を考える.また,三角形 PQR の面積を f(t) とおく.以下の問いに答えよ.

- (1) 関数 f(t) を求めよ.
- (2) 極限 $\lim_{t\to+0} \frac{f(t)}{t}$ を求めよ.
- (3) 関数 f(t) の最大値を求めよ.

〔2〕(配点50点)

三角形 ABC の辺 AB, BC, CA の長さをそれぞれ 1, 2, $\sqrt{3}$ とする. 点 P, Q, R がそれぞれ辺 AB, BC, CA 上を, PQ = QR = RP を満たしながら動くとする. 以下の問いに答えよ.

- (1) $\angle APR$ を θ とおく. ただし, 点 P が点 A に一致するときは $\theta=\frac{\pi}{2}$, 点 R が点 A に一致するときは $\theta=0$ と定める. 線分 PQ の長さを θ を用いて表せ.
- (2) 線分 PQ の長さの最小値を求めよ.

〔3〕(配点50点)

数列 $\{a_n\}$ を

$$a_n = \frac{1}{2^n} \tan\left(\frac{\pi}{2^{n+3}}\right) \quad (n = 1, 2, 3, \dots)$$

と定義する. 以下の問いに答えよ.

(1) $0 < x < \frac{\pi}{4}$ を満たす実数 x に対して,等式

$$\frac{1}{\tan x} - \tan x = \frac{2}{\tan(2x)}$$

を証明せよ.

- (2) $\tan\left(\frac{\pi}{8}\right)$ の値を求めよ.
- (3) 無限級数 $\sum_{n=1}^{\infty} a_n$ の収束,発散について調べ,収束する場合はその和を求めよ.

〔4〕(配点50点)

正の整数 1, 2, 3, … を自然数と呼ぶ. 以下の問いに答えよ.

(1) 次の不等式を満たす自然数 x, y の組 (x,y) をすべて求めよ.

$$0 < \left| \frac{1}{2} - \frac{x}{y} \right| < \frac{1}{y^2}$$

(2) 次の不等式を満たす自然数 x, y の組 (x,y) をすべて求めよ.

$$\left|\frac{1}{2} - \frac{x^2}{y^2}\right| < \frac{2}{y^3}$$

〔5〕(配点50点)

3つの部屋がある建物 A と、4つの部屋がある建物 B があり、建物 A の各部屋には番号 1、2、3が、建物 B の各部屋には番号 1、2、3、4 がそれぞれ付いている。また、互いに区別できない荷物が 7 個用意されており、それぞれの荷物を建物 A または建物 B のいずれかの部屋に格納する。ただし、1つの部屋に 7 個すべての荷物を格納する配置や、建物 A にまったく荷物が格納されない配置、建物 B にまったく荷物が格納されない配置もある。以下の問いに答えよ。

- (1) 荷物の配置は何通りあるか.
- (2) 建物 A の番号 2 の部屋に荷物が 3 個だけ格納される配置は何通りあるか.
- (3) 建物 A に格納される荷物の総数よりも,建物 B に格納される荷物の総数が多い配置は何通りあるか.
- (4) 建物 B の中に荷物がまったく格納されない部屋が 1 つ以上ある配置は何通りあるか.