問題紙

1

- (1) x を正数とするとき、 $\log\left(1+\frac{1}{x}\right)$ と $\frac{1}{x+1}$ の大小を比較せよ。
- (2) $\left(1+rac{2001}{2002}
 ight)^{2002}$, $\left(1+rac{2002}{2001}
 ight)^{2002}$ の大小を比較せよ。

 $oxed{2}$ a,b を正数とし,xy 平面で不等式

$$\frac{\{x - (1 - a)\}^2}{a^2} + \frac{y^2}{b^2} \le 1$$

の表す領域 D と、不等式 $x^2 + y^2 \le 1$ の表す領域 E を考える。

- (1) a = 2, b = 1 の場合に、領域 D を図示せよ。
- (2) D が E に含まれるための a,b の条件を求め、ab 平面上でその条件の表す領域を図示せよ。
- $oxed{3}$ f(x) を実数全体で定義された連続関数で、x>0 で 0< f(x)<1 を満たすものとする。 $a_1=1$ とし、順に、

$$a_m = \int_0^{a_{m-1}} f(x)dx \quad (m = 2, 3, 4, \cdots)$$

により数列 $\{a_m\}$ を定める。

- (1) $m \ge 2$ に対し、 $a_m > 0$ であり、かつ $a_1 > a_2 > \cdots > a_{m-1} > a_m > \cdots$ となることを示せ。
- (2) $\frac{1}{2002} > a_m$ となる m が存在することを背理法を用いて示せ。

 $oxedsymbol{f 4}$ $({
m A})$ 関係式

$$x^a = y^b = z^c = xyz$$

を満たす 1 とは異なる 3 つの正の実数の組 (x,y,z) が、少なくとも 1 組存在するような、正の整数の組 (a,b,c) をすべて求めよ。ただし、 $a \le b \le c$ とする。

- $\left(\mathbf{B} \right)$ 次の問いに答えよ。ただし、偏角 θ は、 $0^{\circ} \leqq \theta < 360^{\circ}$ の範囲で考えるものとする。
 - |z+i| = |z-i| を満たす複素数 z は、実数に限ることを示せ。
 - (2) 複素数平面上で z が実軸上を動くとき、複素数 z+i の偏角 $\arg(z+i)$ の動く範囲を求めよ。
 - (3) z を未知数とする方程式 $(z+i)^9=(z-i)^9$ のすべての解 z について z+i の偏角 $\arg(z+i)$ を求めよ。