問題紙

 $oxed{1}$ 2 次方程式 $x^2-px-q=0$ は実数解 lpha、eta を持つものとする。座標平面上の点列 $\{P_n(a_n,b_n)\}$ $(n=0,1,2,\cdots)$ を次のように定める。

$$(a_0, b_0) = (0, 0), \quad \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} q & p \\ pq & p^2 + q \end{pmatrix} \begin{pmatrix} a_{n-1} \\ b_{n-1} \end{pmatrix} + \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \quad (n = 1, 2, 3, \cdots)$$

- (1) P_2 , P_3 の座標を α のみを用いて表せ。
- (2) P_n の座標を α のみを用いて表せ。
- (3) $n \to \infty$ のとき, $P_n(a_n,b_n)$ がある点 P(a,b) に収束するための必要十分条件を α に関する条件として与え,その点 P(a,b) を求めよ。
- $oxed{2}$ 0 を原点とする座標平面上の,半径1 の円周 $A: x^2+y^2=1$ と直線 l: y=d (0< d<1) との交点を P,Q とする.円周 A 上の点 R(x,y) は y>d の範囲を動く.線分 Q の交点を Q の交点を Q の交点を Q へ下ろした垂線の足を Q とするとき,線分 Q の長さの最大値を Q を用いて表せ.
- 3 サイコロを n 回投げて,3 の倍数が k 回出る確率を $P_n(k)$ とする.各 n について, $P_n(k)$ を最大にする k を N(n) とする.ただし,このような k が複数あるときは,最も大きいものを N(n) とする.
 - (1) $\frac{P_n(k+1)}{P_n(k)}$ を求めよ.
 - (2) $n \geq 2$ のとき, $\frac{N(n)}{n}$ を最小にする n と,そのときの $\frac{N(n)}{n}$ の値を求めよ.
 - (3) $\lim_{n\to\infty} \frac{N(n)}{n}$ を求めよ.

$\boxed{\mathbf{4}}$ (A)

- (1) 平行四辺形 ABCD において、AB=CD=a,BC=AD=b,BD=c,AC=d とする。このとき, $a^2+b^2=\frac{1}{2}(c^2+d^2)$ が成り立つことを証明せよ。
- (2) 3 つの正数 a,b,c $(0 < a \le b \le c)$ が $a^2 + b^2 > c^2$ を満たすとき,各面の三角形の辺の長さを a,b,c とする四面体が作れることを証明せよ。
- $\left(\mathbf{B}\right)$ 各点で微分可能な関数 y=f(x) のグラフが右の図で与えられている.このとき,y=f'(x) と $y=\int_0^x f(t)dt$ のグラフの概形を解答欄の所定の位置に描け.また,そのようなグラフを描いたポイントを列挙して説明せよ.