- $\mathbf{1}$ xy 平面上に曲線 $C: y = \log x(x > 0)$ を考える。
 - (1) 曲線 C の接線で点 (0,b) を通るものの方程式を求めよ。
 - (2) 平面上に 2 組の点列 $\{A_n\}$, $\{B_n\}$ を次のように定める。 A_1 を (1,0) とする。 A_n が定まったとき, A_n を通り x 軸に平行な直線と y 軸との交点を B_n とし, B_n を通る曲線 C の接線の接点を A_{n+1} とする。このとき,2 つの線分 A_nB_n と B_nA_{n+1} および曲線 C とで囲まれる部分の面積 S_n を求めよ。
 - (3) 無限級数 $\sum_{n=1}^{\infty} \frac{n}{S_n}$ の和を求めよ。ここで,|r|<1 のとき $\lim_{n\to\infty} nr^n=0$ であることを用いてよい。
- $oxed{2}$ s を実数とする. $(u_1,v_1)=(s,1)$ とし, (u_n,v_n) $(n\geqq 2)$ を次の漸化式で定める.

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} u_{n-1} \\ v_{n-1} \end{pmatrix}$$

s が実数全体を動くとき, (u_n, v_n) が描く xy 平面上の図形を l_n とする.

- (1) 図形 l_n $(n \ge 1)$ の方程式を求めよ.
- (2) l_{2k-1} (k は正の整数) と y 軸との交点を中心とし、 l_{2k} に接する円の方程式を求めよ.
- **3** 座標平面上に 3 点 O(0,0), A(4,2), B(6,0) を考える.平面上の直線 l に関して点 A と対称な点が線分 OB 上にあるとき,直線 l をピックリ直線と呼ぶことにする.
 - (1) 点 P(p,q) を通るピックリ直線 l があるとし,l に関して A と対称な点を A'(t,0) ($0 \le t \le 6$) とするとき,p,q,t の間に成り立つ関係式を求めよ.
 - (2) ピックリ直線が 2 本通る点 P(p,q) の存在範囲を求め、それを図示せよ、図には三角形 OAB も書いておくこと、
 - (3) 点 P(p,q) を通る 2 本のピックリ直線が直交するような点 P(p,q) の存在範囲を求め、それを図示せよ.
- 正六面体の各面に1つずつ,サイコロのように,1から6までの整数がもれなく書かれていて,向かい合う面の数の和は7である.このような正六面体が底面の数字が1であるように机の上におかれている.この状態から始めて,次の試行を繰り返し行う.「現在の底面と隣り合う4面のうちの1つを新しい底面にする。」ただし,これらの4面の数字が a_1,a_2,a_3,a_4 のとき,それぞれの面が新しい底面となる確率の比は $a_1:a_2:a_3:a_4$ とする.この試行をn回繰り返した後,底面の数字がmである確率を $p_n(m)$ $n \ge 1$ で表す.
 - (1) $n \ge 1$ のとき、 $q_n = p_n(1) + p_n(6)$ 、 $r_n = p_n(2) + p_n(5)$ 、 $s_n = p_n(3) + p_n(4)$ を求めよ.
 - (2) $p_n(m)$ $(n \ge 1, m = 1, 2, 3, 4, 5, 6)$ を求めよ.