問題紙

- - (1) $A^2 = E$ をみたす上三角行列 A をすべて求めよ。
 - (2) $A^3 = E$ をみたす上三角行列 A をすべて求めよ。
 - (3) 上三角行列 A が $A^4 = E$ をみたすとき、 $A^2 = E$ となることを示せ。

2

- (1) 関数 $f(x) = 2x^3 3x^2 + 1$ のグラフをかけ。
- (2) 方程式 f(x) = a (a は実数) が相異なる 3 つの実数解 $\alpha < \beta < \gamma$ を持つとする。 $l = \gamma \alpha$ を β のみを用いて表せ。
- (3) a が (2) の条件のもとで変化するとき l の動く範囲を求めよ。
- $oxed{3}$ 数列 $\{a_n\}$ $(a_n>0)$ を次の規則によって定める:

$$a_1 = 1;$$
 $\int_{a_n}^{a_{n+1}} \frac{dx}{\sqrt[3]{x}} = 1$ $(n = 1, 2, 3, \cdots).$

曲線 $y=\frac{1}{\sqrt[3]{x}}$ と,x 軸および 2 直線 $x=a_n$, $x=a_{n+1}$ で囲まれた図形を x 軸の周りに 1 回転させた回転体の体積を V_n とする。このとき $\lim_{n\to\infty}\sqrt{n}V_n$ を求めよ。

- $oxed{4}$ ig(A) 原点 O(0,0) を中心とする半径 1 の円に,円外の点 $P(x_0,y_0)$ から 2 本の接線を引く。
 - (1) 2 つの接点の中点を Q とするとき、点 Q の座標 (x_1,y_1) を点 P の座標 (x_0,y_0) を用いて表せ。また $OP \cdot OQ = 1$ であることを示せ。
 - (2) 点 P が直線 x+y=2 上を動くとき、点 Q の軌跡を求めよ。
 - (\mathbf{B}) 袋の中に赤と黄と青の玉が 1 個ずつ入っている。「この袋から玉を 1 個取り出して戻し,出た玉を同じ色の玉を袋の中に 1 個追加する」という操作を N 回繰り返した後,赤の玉が袋の中に m 個ある確率を $p_N(m)$ とする。
 - (1) 連比 $p_3(1):p_3(2):p_3(3):p_3(4)$ を求めよ。
 - (2) 一般の N に対し $p_N(m)$ $(1 \leq m \leq N+1)$ を求めよ。