- $oxed{1}$ $a>0,\,b>0$ とする. 点 A(0,a) を中心とする半径 r の円が,双曲線 $x^2-\frac{y^2}{b^2}=1$ と 2 点 B(s,t),C(-s,t) で接しているとする. ただし,s>0 とする. ここで,双曲線と円が点 P で接するとは,P が双曲線と円の共有点であり,かつ点 P における双曲線の接線と点 P における円の接線が一致することである.
 - (1) r, s, t を, a と b を用いて表せ.
 - (2) \triangle ABC が正三角形となる a と r が存在するような b の値の範囲を求めよ.
- | **2** | 関数 f(x) と $g(\theta)$ を $f(x) = \int_{-1}^x \sqrt{1-t^2}dt$ $(-1 \le x \le 1)$, $g(\theta) = f(\cos\theta) f(\sin\theta)$ $(0 \le \theta \le 2\pi)$ で定める。
 - (1) 導関数 $g'(\theta)$ を求めよ。
 - (2) $g(\theta)$ を求めよ。
 - (3) $y = g(\theta)$ のグラフをかけ。
- 3 行列 $A = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ に対して、座標空間の点 P_n の座標 (a_n,b_n,c_n) $(n=1,2,3,\cdots)$ を、 $(a_1,b_1,c_1) = (1,0,0)$ 、 $\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = A \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ 、 $c_{n+1} = c_n + \sqrt{a_n b_n} \; (n=1,2,3,\cdots)$ で定める。
 - (1) A^3 を求めよ。
 - (2) 点 P_2 , P_3 , P_4 の座標を求めよ。
 - (3) 点 P_n の座標を求めよ。
- $oxed{4}$ $oxed{A}$ さいころを投げると,1 から 6 までの整数の目が等しい確率で出るとする. さいころを n 回 $(n=1,2,3,\cdots)$ 投げるとき,出る目の積の一の位が j $(j=0,1,2,\cdots,9)$ となる確率を $p_n(j)$ とする.
 - (1) $p_2(0)$, $p_2(1)$, $p_2(2)$ を求めよ.
 - (2) $p_{n+1}(1)$ を, $p_n(1)$ と $p_n(7)$ を用いて表せ.
 - (3) $p_n(1) + p_n(3) + p_n(7) + p_n(9)$ を求めよ.
 - (4) $p_n(5)$ を求めよ.
 - (B) x,y を正の整数とする。
 - (1) $\frac{2}{x} + \frac{1}{y} = \frac{1}{4}$ をみたす組 (x, y) をすべて求めよ。
 - (2) p を 3 以上の素数とする。 $\frac{2}{x}+\frac{1}{y}=\frac{1}{p}$ をみたす組 (x,y) のうち,2x+3y を最小にする (x,y) を求めよ。

1