- $oxedsymbol{1}$ 平面上の長方形 ABCD が次の条件 $ext{(a)}$ 、 $ext{(b)}$ 、 $ext{(c)}$ をみたしているとする。
 - (a) 対角線 AC と BD の交点は原点 O に一致する。
 - (b) 直線 AB の傾きは 2 である。
 - (c) $A \circ y$ 座標は、 $B, C, D \circ y$ 座標より大きい。

このとき、a>0,b>0 として、辺 AB の長さを $2\sqrt{5}a$ 、BC の長さを $2\sqrt{5}b$ とおく。

- (1) A, B, C, D の座標を a, b で表せ。
- (2) 長方形 ABCD が領域 $x^2 + (y-5)^2 \le 100$ に含まれるための a,b に対する条件を求め、ab 平面上に図示せよ。
- 2 関数 f(x) を f(x) = $\begin{cases} 1 & (x \ge 0) \\ 0 & (x < 0) \end{cases}$ により定める。
 - (1) a,b は実数とする。 y=ax+b のグラフと y=f(x) のグラフがちょうど 2 つの交点を持つための a,b に対する条件を求めよ。
 - (2) p,q は実数で p>0 とする。 $y=x^3+6px^2+9p^2x+q$ のグラフと y=f(x) のグラフがちょうど 4 つの交点を持つための p,q に対する条件を求め、pq 平面上に図示せよ。
- はじめに、A が赤玉を 1 個、B が白玉を 1 個、C が青玉を 1 個持っている。表裏の出る確率がそれぞれ $\frac{1}{2}$ の硬貨を投げ、表が出れば A と B の玉を交換し、裏が出れば B と C の玉を交換するという操作を考える。この操作を n 回 $(n=1,2,3,\dots)$ くり返した後に A, B, C が赤玉を持っている確率をそれぞれ $a_n,\,b_n,\,c_n$ とおく。
 - (1) a_1 , b_1 , c_1 , a_2 , b_2 , c_2 を求めよ。
 - (2) a_{n+1} , b_{n+1} , c_{n+1} を a_n , b_n , c_n で表せ。
 - (3) n が奇数ならば $a_n=b_n>c_n$ が成り立ち、n が偶数ならば $a_n>b_n=c_n$ が成り立つことを示せ。
 - (4) b_n を求めよ。