1 座標空間に8点

 $O(0,0,0), \quad P(1,0,0), \quad Q(1,1,0), \quad R(0,1,0), \quad A(0,0,1), \quad B(1,0,1), \quad C(1,1,1), \quad D(0,1,1)$

をとり、線分 BC の中点を M とする。線分 RD 上の点を N(0,1,t) とし、3 点 O,M,N を通る平面と線分 PD および線分 PB との交点をそれぞれ K,L とする。

- (1) K の座標を t で表せ。
- (2) 四面体 OKLP の体積を V(t) とする。N が線分 RD 上を R から D まで動くとき、V(t) の最大値と最小値およびそれらを与える t の値をそれぞれ求めよ。
- | **2** | 関数 $f(x)=(x^2-x)e^{-x}$ について,次の問いに答えよ。必要ならば,任意の自然数 n に対して $\lim_{x\to +\infty}x^ne^{-x}=0$ が成り立つことを用いてよい。
 - (1) y = f(x) のグラフの変曲点を求め、グラフの概形をかけ。
 - (2) a>0 とする。点(0,a) を通る y=f(x) のグラフの接線が 1 本だけ存在するような a の値を求めよ。また,a がその値をとるとき,y=f(x) のグラフ,その接線および y 軸で囲まれた図形の面積を求めよ。
- はじめに、A が赤玉を 1 個、B が白玉を 1 個、C が青玉を 1 個持っている。表裏の出る確率がそれぞれ $\frac{1}{2}$ の硬貨を投げ、表が出れば A と B の玉を交換し、裏が出れば B と C の玉を交換する、という操作を考える。この操作を n 回 $(n=1,2,3,\dots)$ くり返した後に A、B、C が赤玉を持っている確率をそれぞれ a_n 、 b_n 、 c_n とおく。
 - (1) a_1 , b_1 , c_1 , a_2 , b_2 , c_2 を求めよ。
 - (2) a_{n+1} , b_{n+1} , c_{n+1} を a_n , b_n , c_n で表せ。
 - (3) a_n , b_n , c_n を求めよ。
- $oxedsymbol{4}$ xy 平面上で x 座標と y 座標がともに整数である点を格子点と呼ぶ。
 - (1) $y=\frac{1}{2}x^2+\frac{1}{2}x$ のグラフ上に無限個の格子点が存在することを示せ。
 - (2) a,b は実数で $a \neq 0$ とする。 $y = ax^2 + bx$ のグラフ上に,点 (0,0) 以外に格子点が 2 つ存在すれば,無限個存在することを示せ。