問題紙

- 1 3人でジャンケンをする。各人はグー,チョキ,パーをそれぞれ $\frac{1}{3}$ の確率で出すものとする。負けた人は脱落し,残った人で次回のジャンケンを行い(アイコのときは誰も脱落しない),勝ち残りが1人になるまでジャンケンを続ける。このとき各回の試行は独立とする。 3人でジャンケンを始め,ジャンケンが n 回目まで続いて n 回目終了時に2人が残っている確率を p_n ,3人が残っている確率を p_n とおく。
 - (1) p_1, q_1 を求めよ。
 - (2) p_n,q_n がみたす漸化式を導き、 p_n,q_n の一般項を求めよ。
 - (3) ちょうど n 回目で1人の勝ち残りが決まる確率を求めよ。
- 2 $x > 0 とし, f(x) = \log x^{100}$ とおく。
 - (1) 次の不等式を証明せよ。

$$\frac{100}{x+1} < f(x+1) - f(x) < \frac{100}{x}$$

- (2) 実数 a の整数部分 $(k \le a < k+1)$ となる整数 k) を [a] で表す。整数 [f(1)], [f(2)], [f(3)], ..., [f(1000)] のうちで 異なるものの個数を求めよ。必要ならば $\log 10 = 2.3026$ として計算せよ。
- $oxed{3}$ k,m,n は整数とし, $n\geqq 1$ とする。 mC_k を二項係数として, $S_k(n)$, $T_m(n)$ を以下のように定める。

$$S_k(n) = 1^k + 2^k + 3^k + \dots + n^k, \quad S_k(1) = 1 \quad (k \ge 0)$$

$$T_m(n) = \sum_{k=1}^{m-1} {}_m C_k S_k(n) \quad (m \ge 2)$$

- (1) $T_m(1)$ と $T_m(2)$ を求めよ。
- (2) 一般の n に対して $T_m(n)$ を求めよ。
- (3) p が 3 以上の素数のとき、 $S_k(p-1)$ $(k=1,2,3,\cdots,p-2)$ は p の倍数であることを示せ。
- 半径 1 の円盤 C_1 が半径 2 の円板 C_2 に貼り付けられており,2 つの円盤の中心は一致する。 C_2 の周上にある定点を A とする。図のように,時刻 t=0 において C_1 は O(0,0) で x 軸に接し,A は座標 (0,-1) の位置にある。2 つの円盤は一体となり, C_1 は x 軸上をすべることなく転がっていく。時刻 t で C_1 の中心が点 (t,1) にあるように転がるとき, $0 \le t \le 2\pi$ において A が描く曲線を C とする。
 - (1) 時刻 t における A の座標を (x(t),y(t)) で表す。(x(t),y(t)) を求めよ。
 - (2) x(t) と y(t) の t に関する増減を調べ、x(t) あるいは y(t) が最大値または最小値をとるときの A の座標を全て求めよ。
 - (3) C と x 軸で囲まれた図形の面積を求めよ。