問題紙

- 空間内にある半径 1 の球(内部を含む)を B とする。直線 l と B が交わっており,その交わりは長さ $\sqrt{3}$ の線分である。
 - (1) B の中心と l との距離を求めよ。
 - (2) l のまわりに B を 1 回転してできる立体の体積を求めよ。
- $oxed{2}$ 実数 t に対して 2 点 $P(t,t^2)$, $Q(t+1,(t+1)^2)$ を考える。t が $-1 \leq t \leq 0$ の範囲を動くとき,線分 PQ が通過してできる図形 を図示し、その面積を求めよ。
- $oxed{3}$ 平面の $y\geqq 0$ の部分にあり,x 軸に接する円の列 C_1,C_2,C_3,\cdots を次のように定める。
 - C_1 と C_2 は半径 1 の円で, 互いに外接する。
 - 正の整数 n に対し, C_{n+2} は C_n と C_{n+1} に外接し, C_n と C_{n+1} の弧および x 軸で囲まれる部分にある。

円 C_n の半径を r_n とする。

- (1) 等式 $\frac{1}{\sqrt{r_{n+2}}} = \frac{1}{\sqrt{r_n}} + \frac{1}{\sqrt{r_{n+1}}}$ を示せ。
 (2) すべての正の整数 n に対して $\frac{1}{\sqrt{r_n}} = s\alpha^n + t\beta^n$ が成り立つように、n によらない定数 α, β, s, t の値を一組与えよ。
- (3) $n \to \infty$ のとき数列 $\left\{ \frac{r_n}{k^n} \right\}$ が正の値に収束するように実数 k の値を定め,そのときの極限値を求めよ。
- $oxed{4}$ 負でない整数 N が与えられたとき, $a_1=N$, $a_{n+1}=\left[rac{a_n}{2}
 ight]$ $(n=1,2,3,\cdots)$ として数列 $\{a_n\}$ を定める。ただし [~a~] は,実数 a の整数部分 ($k \le a < k+1$ となる整数 k) を表す。
 - (1) $a_3 = 1$ となるような N をすべて求めよ。
 - (2) $0 \le N < 2^{10}$ をみたす整数 N のうちで,N から定まる数列 $\{a_n\}$ のある項が 2 となるようなものはいくつあるか。
 - (3) 0 から $2^{100}-1$ までの 2^{100} 個の整数から等しい確率で N を選び,数列 $\{a_n\}$ を定める。次の条件(*)をみたす最小の正 の整数 m を求めよ。
 - (*) 数列 $\{a_n\}$ のある項が m となる確率が $\frac{1}{100}$ 以下となる。