問題紙

- $oxed{1}$ a を正の定数とする。2 次関数 $f(x)=ax^2$ と 3 次関数 $g(x)=x(x-4)^2$ について,次の問に答えよ。
 - (1) 関数 y = g(x) について、極値を求め、そのグラフを描け。
 - (2) 2 つの曲線 y=f(x) と y=g(x) は相異なる 3 点で交わることを示せ。
 - (3) 2 つの曲線 y=f(x) と y=g(x) で囲まれた 2 つの部分の面積が等しくなるように a の値を定めよ。またそのとき,2 つの曲線の交点の x 座標を求めよ。
- $oldsymbol{2}$ 下図のような立方体を考える。この立方体の 8 つの頂点の上を点 P が次の規則で移動する。時刻 0 では点 P は頂点 A にいる。時刻が 1 増えるごとに点 P は、今いる頂点と辺で結ばれている頂点に等確率で移動する。例えば時刻 n で点 P が頂点 H にいるとすると、時刻 n+1 では、それぞれ $\frac{1}{3}$ の確率で頂点 D、E、G のいずれかにいる。自然数 $n \geq 41$ に対して,
 - (i) 点 P が時刻 n までの間一度も頂点 A に戻らず、かつ時刻 n で頂点 B、D、E のいずれかにいる確率を p_n 、
 - (ii) 点 P が時刻 n までの間一度も頂点 A に戻らず、かつ時刻 n で頂点 C、F、H のいずれかにいる確率を q_n 、
 - (iii) 点 P が時刻 n までの間一度も頂点 A に戻らず、かつ時刻 n で頂点 G にいる確率を r_n 、

とする。このとき、次の問に答えよ。

- (1) p_2, q_2, r_2 および p_3, q_3, r_3 を求めよ。
- (2) $n \ge 42$ のとき、 p_n, q_n, r_n を求めよ。
- (3) 自然数 $m \ge 41$ に対して、点 P が時刻 2m で頂点 A に初めて戻る確率 s_m を求めよ。
- **3** 次の問に答えよ。
 - (1) 次の条件(*)を満たす 3 つの自然数の組 (a,b,c) をすべて求めよ。(*) a < b < c かつ $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2}$ である。
 - (2) 偶数 2n $(n \ge 41)$ の 3 つの正の約数 p,q,r で,p>q>r と p+q+r=n を満たす組 (p,q,r) の個数を f(n) とする。ただし,条件を満たす組が存在しない場合は,f(n)=0 とする。n が自然数全体を動くときの f(n) の最大値 M を求めよ。また,f(n)=M となる自然数 n の中で最小のものを求めよ。