- $\boxed{\mathbf{1}}$ 自然数 n に対し,定積分 $I_n = \int_0^1 \frac{x^n}{x^2+1} dx$ を考える。このとき,次の問に答えよ。

 - $(1) \ I_n + I_{n+2} = rac{1}{n+1}$ を示せ。 $(2) \ 0 \le I_{n+1} \le I_n \le rac{1}{n+1}$ を示せ。
 - (3) $\lim_{n \to \infty} nI_n$ を求めよ。
 - (4) $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{2k}$ とする。このとき (1), (2) を用いて $\lim_{n\to\infty} S_n$ を求めよ。
- $oxed{2}$ a を 1 より大きい実数とする。このとき,次の問に答えよ。
 - (1) 関数 $y=a^x$ と $y=\log_a x$ のグラフの共有点は、存在すれば直線 y=x 上にあることを示せ。
 - (2) 関数 $y=a^x$ と $y=\log_a x$ のグラフの共有点は 2 個以下であることを示せ。
 - (3) 関数 $y=a^x$ と $y=\log_a x$ のグラフの共有点は 1 個であるとする。このときの共有点の座標と a の値を求めよ。
- p を素数, a, b を整数とする。このとき,次の問に答えよ。
 - (1) $(a+b)^p a^p b^p$ は p で割り切れることを示せ。
 - $(2) (a+2)^p a^p$ は偶数であることを示せ。
 - (3) $(a+2)^p a^p$ を 2p で割ったときの余りを求めよ。
- $oxed{4}$ 図 $_1$ のように $_2$ つの正方形 $_4$ ABCD と $_4$ CDEF を並べた図形を考える。 $_2$ 点 $_4$ P, $_4$ が $_5$ 個の頂点 A, $_5$ B, $_5$ C, $_5$ E, $_5$ を以下の規 則(a),(b)に従って移動する。
 - (a) 時刻0では図2のように点Pは頂点Aに、点Qは頂点Cにいる。
 - (b) 点 P, Q は時刻が 1 増えるごとに独立に、今いる頂点と辺で結ばれている頂点に等確率で移動する。

時刻 n まで 2 点 P, Q が同時に同じ頂点にいることが一度もない確率を p_n と表す。また時刻 n まで 2 点 P, Q が同時に同じ頂 点にいることが一度もなく,かつ時刻 n に 2 点 P, Q がともに同じ正方形上にいる確率を a_n と表し, $b_n=p_n-a_n$ と定める。こ のとき,次の問に答えよ。

- (1) 時刻 1 での点 P, Q の可能な配置を, 図 2 にならってすべて図示せよ。
- (2) a_1, b_1, a_2, b_2 を求めよ。
- (3) a_{n+1}, b_{n+1} を a_n, b_n で表せ。
- (4) $p_n \leq \left(\frac{3}{4}\right)^n$ を示せ。