問題紙

- $oxed{1}$ 正の整数 n に対し $I_n = \int_0^{rac{\pi}{3}} rac{d heta}{\cos^n heta}$ とする。
 - $(1) \ I_1 \ を求めよ。必要ならば \ \frac{1}{\cos\theta} = \frac{1}{2} \left(\frac{\cos\theta}{1+\sin\theta} + \frac{\cos\theta}{1-\sin\theta} \right) \ を使ってよい。$
 - (2) $n \ge 3$ のとき, I_n を I_{n-2} と n で表せ。
 - (3) xyz 空間において xy 平面内の原点を中心とする半径 1 の円板を D とする。D を底面とし、点 (0,0,1) を頂点とする円錐を C とする。C を平面 $x=\frac{1}{2}$ で 2 つの部分に切断したとき、小さい方を S とする。z 軸に垂直な平面による切り口を考えて S の体積を求めよ。
- | **2** 空間内に \angle BAC $=\frac{\pi}{2}$ の直角二等辺三角形 ABC と平面 P がある。点 A は P 上にあり,点 B と点 C は P 上にはなく,P に関して同じ側に位置している。点 B,C から P に下ろした垂線と P との交点をそれぞれ B',C' とする。
 - (1) $AB' \cdot AC' + B'B \cdot C'C = 0$ を示せ。
 - (2) $\angle B'AC' > \frac{\pi}{2}$ を示せ。
 - (3) P 上の三角形 AB'C' の辺の長さは短いものから 4, $\sqrt{21}$, 7 であった。このとき, 辺 AB の長さを求めよ。
- $oxed{3}$ 正の整数 n の正の平方根、 \sqrt{n} は整数ではなく,それを 10 進法で表すと,小数第 1 位は 0 であり,第 2 位は 0 以外の数であるとする。
 - (1) このような n の中で最小のものを求めよ。
 - (2) このような n を小さいものから順に並べたときに 10 番目にくるものを求めよ。
- 正の整数 n に対して $1,2,\cdots,n$ を一列に並べた順列を考える。そのような順列は n! 個ある。このうち 1 つを等確率で選んだものを (a_1,a_2,\cdots,a_n) とする。この (a_1,a_2,\cdots,a_n) に対し、各添字 $i=1,2,\cdots,n$ について、 a_i の値が j であるとき、その j を添字にもつ a_j の値が k であることを $a_i=j\to a_j=k$ と書くことにする。ここで $a_i=j\to a_j=k\to a_k=l\to\cdots$ のようにたどり、それを続けていく。例えば $(a_1,a_2,a_3,a_4,a_5,a_6,a_7)=(2,5,6,1,4,3,7)$ のとき、
 - (i) $a_1 = 2 \rightarrow a_2 = 5 \rightarrow a_5 = 4 \rightarrow a_4 = 1 \rightarrow a_1 = 2$
 - (ii) $a_3 = 6 \rightarrow a_6 = 3 \rightarrow a_3 = 6$
 - (iii) $a_7 = 7 \to a_7 = 7$

となり、どのi から始めても列は必ず一巡する。この一巡するそれぞれの列をサイクル、列に現れる相異なる整数の個数をサイクルの長さと呼ぶ。上の(i),(ii),(iii) は長さがそれぞれ4,2,1 のサイクルになっている。

1

- (1) n=3 とする。選んだ順列が長さ 1 のサイクルを含む確率を求めよ。
- (2) n=4 とする。長さ 4 のサイクルを含む順列をすべて挙げよ。
- (3) n 以下の正の整数 k に対して $\sum_{j=k}^{n} \frac{1}{j} > \log(n+1) \log k$ を示せ。
- (4) n を奇数とする。選んだ順列が長さ $\frac{n+1}{2}$ 以上のサイクルを含む確率 p は $p>\log 2$ をみたすことを示せ。