- $oxed{1}$ a を正の実数とする。放物線 $y=x^2$ を C_1 ,放物線 $y=-x^2+4ax-4a^2+4a^4$ を C_2 とする。以下の問いに答えよ。
 - (1) 点 (t, t^2) における C_1 の接線の方程式を求めよ。
 - (2) C_1 と C_2 が異なる 2 つの共通接線 ℓ , ℓ' を持つような a の範囲を求めよ。ただし C_1 と C_2 の共通接線とは, C_1 と C_2 の両方に接する直線のことである。
 - (3) a は (2) で求めた範囲にあるとし、 ℓ 、 ℓ' を C_1 と C_2 の異なる 2 つの共通接線とする。 ℓ 、 ℓ' の交点の座標を求めよ。
 - (4) C_1 と ℓ , ℓ' で囲まれた領域を D_1 とし、不等式 $x \leq a$ の表す領域を D_2 とする。 D_1 と D_2 の共通部分の面積 S(a) を求めよ。
- $oldsymbol{2}$ 4 つの実数を $lpha=\log_2 3,\ eta=\log_3 5,\ \gamma=\log_3 2,\ \delta=rac32$ とおく。以下の問いに答えよ。
 - (1) $\alpha\beta\gamma=1$ を示せ。
 - (2) α , β , γ , δ を小さい順に並べよ。
 - $(3) \ p = \alpha + \beta + \gamma, \ q = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \ \texttt{とし}, \ f(x) = x^3 + px^2 + qx + 1 \ \texttt{とする}. \ \texttt{このとき} \ f\left(-\frac{1}{2}\right), \ f(-1) \ \texttt{および} \ f\left(-\frac{3}{2}\right) \ \texttt{O}$ 正負を判定せよ。
- 3 1から12までの数字が下の図のように並べて書かれている。以下のルール(a)、(b)と(終了条件)を用いたゲームを行う。ゲームを開始すると最初に(a)を行い,(終了条件)が満たされたならゲームを終了する。そうでなければ(終了条件)が満たされるまで(b)の操作を繰り返す。ただし,(a)と(b)における数字を選ぶ操作はすべて独立な試行とする。
 - (a) 1 から 12 までの数字のどれか 1 つを等しい確率で選び、下の図において選んだ数字を丸で囲み、その上に石を置く。
 - (b) 石が置かれた位置の水平右側または垂直下側の位置にある数字のどれか 1 つを等しい確率で選び,その数字を丸で囲み,そこに石を移して置く。例えば,石が 6 の位置に置かれているときは,その水平右側または垂直下側の位置にある数字 7、8、9、10、12 のどれか 1 つの数字を等しい確率で選び,その数字を丸で囲み,そこに石を移して置く。

(終了条件) 5、9、11、12 の数字のどれか 1 つが丸で囲まれ石が置かれている。

ゲームの終了時に数字jが丸で囲まれている確率を p_i とする。以下の問に答えよ。

1	2	3	4	5
6	7	8	9	
10	11			
12				

- (1) 確率 p2 を求めよ。
- (2) 確率 p₅ とを求めよ。
- (3) 確率 p_{11} のうち最も大きいものの値を求めよ。