- **1** *a, b* を実数とする。
 - (1) 整式 x^3 を 2 次式 $(x-a)^2$ で割ったときの余りを求めよ。
 - (2) 実数を係数とする 2 次式 $f(x)=x^2+\alpha x+\beta$ で整式 x^3 を割ったときの余りが 3x+b とする。b の値に応じて、このような f(x) が何個あるかを求めよ。
- $oxed{2}$ 1 つのサイコロを 3 回投げる。 1 回目に出る目を a, 2 回目に出る目を b, 3 回目に出る目を c とする。なおサイコロは 1 から 6 までの目が等しい確率で出るものとする。
 - (1) $ab + 2c \ge abc$ となる確率を求めよ。
 - (2) ab + 2c と abc が互いに素となる確率を求めよ。
- **3** 複素数平面上に、原点 O を頂点の 1 つとする正六角形 OABCDE が与えられている。ただしその頂点は時計の針の進む方向と逆向きに O, A, B, C, D, E とする。互いに異なる 0 でない複素数 α , β , γ が、

$$0 \le \arg\left(\frac{\beta}{\alpha}\right) \le \pi, \quad 4\alpha^2 - 2\alpha\beta + \beta^2 = 0, \quad 2\gamma^2 - (3\alpha + \beta + 2)\gamma + (\alpha + 1)(\alpha + \beta) = 0$$

を満たし、 α , β , γ のそれぞれが正六角形 OABCDE の頂点のいずれかであるとする。

- (1) $\frac{\beta}{\alpha}$ を求め、 β , γ をそれぞれどの頂点か答えよ。
- (2) 組 (α, β, γ) をすべて求め、それぞれの組について正六角形 OABCDE を複素数平面上に図示せよ。

4

関数 f(x) は区間 $x \ge 0$ において連続な増加関数で f(0) = 1 を満たすとする。ただし f(x) が区間 $x \ge 0$ における増加関数であるとは、区間内の任意の実数 x_1, x_2 に対し $x_1 < x_2$ ならば $f(x_1) < f(x_2)$ が成り立つときをいう。以下、n は正の整数とする。

- (1) $\lim_{x \to \infty} \int_0^{2-\frac{1}{n}} \frac{f(x)}{2-x} dx = \infty$ を示せ。
- (2) 区間 y>2 において関数 $F_n(y)$ を $F_n(y)=\int_{2-\frac{1}{n}}^y \frac{f(x)}{x-2} dx$ と定めるとき、 $\lim_{y\to\infty} F_n(y)=\infty$ を示せ。また $2+\frac{1}{n}$ より大き い実数 a_n で

$$\int_0^{2-\frac{1}{n}} \frac{f(x)}{2-x} dx + \int_{2+\frac{1}{n}}^{a_n} \frac{f(x)}{2-x} dx = 0$$

を満たすものがただ1つ存在することを示せ。

(3) (2) の a_n について、不等式 $a_n < 4$ がすべての n に対して成り立つことを示せ。