問題紙

- 1 関数 $f(x) = \sqrt{x} + \frac{2}{\sqrt{x}} (x > 0)$ に対して、y = f(x) のグラフを C とする。
 - (1) f(x) の極値を求めよ。
 - (2) x 軸上の点 P(t,0) から C にちょうど 2 本の接線を引くことができるとする。そのような実数 t の値の範囲を求めよ。
 - (3) (2) において、C の 2 つの接点の x 座標を α 、 β (α < β) とする。 α 、 β がともに整数であるような組 (α , β) をすべて求めよ。
- $oldsymbol{2}$ c を 1 より大きい実数とする。また,i を虚数単位として, $a=rac{1-i}{\sqrt{2}}$ とおく。複素数 z に対して,

$$P(z) = z^3 - 3z^2 + (c+2)z - c$$
, $Q(z) = -a^7z^3 + 3a^6z^2 + (c+2)az - c$

と定める。

- (1) 方程式 P(z) = 0 を満たす複素数 z をすべて求め、それらを複素数平面上に図示せよ。
- (2) 方程式 Q(z)=0 を満たす複素数 z のうち実部が最大のものを求めよ。
- (3) 複素数 z についての 2 つの方程式 P(z)=0, Q(z)=0 が共通解 β を持つとする。そのときの c の値と β を求めよ。
- $oxed{3}$ 座標空間の 3 点 $A(3,1,3),\,B(4,2,2),\,C(4,0,1)$ の定める平面を H とする。また,

$$\overrightarrow{AP} = s\overrightarrow{AB} + t\overrightarrow{AC}$$
 (s,t) は非負の実数)

を満たすすべての点Pからなる領域をKとする。

- (1) 内積 $\overrightarrow{AB} \cdot \overrightarrow{AB}$, $\overrightarrow{AC} \cdot \overrightarrow{AC}$, $\overrightarrow{AB} \cdot \overrightarrow{AC}$ を求めよ。
- (2) 原点 O(0,0,0) から平面 H に下ろした垂線の足を Q とする。 \overrightarrow{AQ} を \overrightarrow{AB} と \overrightarrow{AC} で表せ。
- (3) 領域 K 上の点 P に対して、線分 OP 上の点で $\overrightarrow{AR} = r\overrightarrow{AC}$ (r は非負の実数) を満たす点 R が存在することを示せ。
- (4) 領域 K において原点 O からの距離が最小となる点 S の座標を求めよ。
- 【4】 袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を p $(0 \le p \le 1)$ とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を n 回行うとき,赤玉を k 回以上取り出す確率を f(k) とおく。
 - (1) $n \ge 2$ に対して, f(1) と f(2) を求めよ。
 - (2) $k=1,2,\ldots,n$ に対して、等式

$$f(k) = \frac{n!}{(k-1)!(n-k)!} \int_0^p x^{k-1} (1-x)^{n-k} dx$$

を示せ。

(3) 自然数 k に対して、定積分

$$I = \int_0^{\frac{1}{2}} x^k (1 - x)^k dx$$

を求めよ。