- n を自然数とする。
 - (1) n 個の複素数 z_k $(k = 1, 2, \dots, n)$ が

$$0 \le \arg z_k \le \frac{\pi}{2}$$

をみたすならば、不等式

$$|z_1|^2 + |z_2|^2 + \dots + |z_n|^2 \le |z_1 + z_2 + \dots + |z_n|^2$$

が成り立つことを示せ。

(2) n 個の実数 θ_k $(k=1,2,\cdots,n)$ が

$$0 \le \theta_k \le \frac{\pi}{2}$$
 איכ $\cos \theta_1 + \cos \theta_2 + \dots + \cos \theta_n = 1$

をみたすならば、不等式

$$\sqrt{n-1} \le \sin \theta_1 + \sin \theta_2 + \dots + \sin \theta_n$$

が成り立つことを示せ。

2

素数 p,q に対して

$$a_n = p^n - 4(-q)^n \quad (n = 1, 2, 3, \dots)$$

によって整数 a_n を定める。ただし,p > 2q とする。

- (1) a_1 と a_2 が 1 より大きい公約数 m をもつならば、m=3 であることを示せ。
- (2) a_n がすべて 3 の倍数であるような p,q のうちで積 pq が最小となるものを求めよ。

 $oxed{3}$ n を 3 以上の自然数とする。点 O を中心とする半径 1 の円において,円周を n 等分する点 $P_0, P_1, \cdots, P_{n-1}$ を時計回りにとる。各 $i=1,2,\cdots,n$ に対して,直線 OP_{i-1}, OP_i とそれぞれ点 P_{i-1}, P_i で接するような放物線を C_i とする。ただし, $P_n=P_0$ とする。放物線 C_1, C_2, \cdots, C_n によって 囲まれる部分の面積を S_n とするとき, $\lim_{n \to \infty} S_n$ を求めよ。

 $oxed{4}$ 実数 $a,\ r$ に対し数列 $\{x_n\}$ を

$$\begin{cases} x_1 = a, \\ x_{n+1} = rx_n(1 - x_n) & (n = 1, 2, 3, \dots) \end{cases}$$

で定める。

- (1) すべての n について $x_n = a$ となるような a を求めよ。
- (2) $x_2 \neq a$, $x_3 = a$ となるような a の個数を求めよ。
- (3) $0 \le a \le 1$ となるすべての a について $0 \le x_n \le 1$ $(n = 2, 3, 4, \cdots)$ が成り立つような r の範囲を求めよ。

座標平面上に直線 $l: x\sin\theta + y\cos\theta = 1$ $(0 < \theta < \frac{\pi}{2})$ がある。不等式 $x \ge 0, y \ge 0, x\sin\theta + y\cos\theta \ge 1$ が表す領域を D, 不等式 $x \ge 0, y \ge 0, x\sin\theta + y\cos\theta \le 1$ が表す領域を D' とする。

D 内に半径 R の 2 つの円 C_1 , C_2 を, C_1 は l と y 軸に接し, C_2 は l と x 軸に接し, さらに C_1 と C_2 が外接するようにとる。また D' 内に半径 r の 2 つの円 C_1' , C_2' を, C_1' は l と y 軸に接し, C_2' は l と x 軸に接し, さらに C_1' と C_2' が外接するようにとる。

- (1) $\frac{r}{R}$ を θ で表せ。
- (2) θ が $0<\theta<\frac{\pi}{2}$ の範囲を動くとき, $\frac{r}{R}$ のとりうる値の範囲を求めよ。