1 関数 $f(x)=2x^3+x^2-3$ とおく。直線 y=mx が曲線 y=f(x) と相 異なる 3 点で交わるような実数 m の範囲を求めよ。

2 正の整数 n に対して

$$S(n) = \sum_{p=1}^{2n} \frac{(-1)^{p-1}}{p}, \quad T(n) = \sum_{q=1}^{n} \frac{1}{n+q}$$

とおく。等式 S(n)=T(n) $(n=1,2,3,\ldots)$ が成り立つことを、数学的帰納法を用いて示せ。

3 空間内の 4 点 A, B, C, D が

$$AB=1, \quad AC=2, \quad AD=3$$

$$\angle BAC=\angle CAD=60^{\circ}, \quad \angle DAB=90^{\circ}$$

をみたしている。この 4 点から等距離にある点を E とする。線分 AE の長さを求めよ。

 $oxed{4}$ heta を $0 \leq heta < 2\pi$ をみたす実数とする。時刻 t における座標が

$$\begin{cases} x = t \cos \theta \\ y = 1 - t^2 + t \sin \theta \end{cases}$$

で与えられるような動点 $\mathbf{P}(x,y)$ を考える。t が実数全体を動くとき、点 \mathbf{P} が描く曲線を C とする。C が x 軸の $x \ge 0$ の部分と交わる点を Q とする。 以下の問いに答えよ。

- (1) $\theta = \frac{\pi}{4}$ のとき、Q の x 座標を求めよ。
- (2) θ が変化すると曲線 C も変化する。 θ が $0 \le \theta < 2\pi$ の範囲を変化するとき、C が通過する範囲を xy 平面上に図示せよ。
- (3) θ が変化すると点 Q も変化する。Q の x 座標が最大となるような θ $(0 \le \theta < 2\pi)$ について $\tan \theta$ の値を求めよ。

- n を正の整数、a を正の実数とする。曲線 $y=x^n$ と曲線 $y=a\log x$ が、点 P で共通の接線をもつとする。ただし、対数は自然対数である。点 P の x 座標を t とするとき、以下の問いに答えよ。
 - (1) a、t をそれぞれ n を用いて表せ。
 - (2) 曲線 $y=x^n$ と x 軸および直線 x=t で囲まれる部分の面積を S_1 と する。また、曲線 $y=a\log x$ と x 軸および直線 x=t で囲まれる部分の面積を S_2 とする。このとき、 $\frac{S_2}{S_1}$ を n を用いて表せ。
 - (3) $x \ge 0$ のとき、不等式

$$\frac{x^2}{2} - \frac{x^3}{6} \le e^{-x} + x - 1 \le \frac{x^2}{2}$$

が成り立つことを、次の(a)、(b) に分けて示せ。ただし、e は自然対数の底とする。

- (a) $x \ge 0$ のとき、不等式 $e^{-x} + x 1 \le \frac{x^2}{2}$ が成り立つことを示せ。
- (b) $x \ge 0$ のとき、不等式 $\frac{x^2}{2} \frac{x^3}{6} \le e^{-x} + x 1$ が成り立つことを示せ。
- (4) 極限値 $\lim_{n\to\infty}\frac{S_2}{S_1}$ を求めよ。