- 1 放物線 $C: y = x^2$ 上の点 $A_1(a_1, a_1^2), A_2(a_2, a_2^2), A_3(a_3, a_3^2) \dots$ を、 $A_{k+2} \; (k \geqq 1)$ における C の接線が直線 $A_k A_{k+1}$ に平行であるようにと る。ただし、 $a_1 < a_2$ とする。三角形 $A_k A_{k+1} A_{k+2}$ の面積を T_k とし、直 線 A_1A_2 と C で囲まれた部分の面積を S とする。このとき次の問いに答 えよ。

 - (1) $\frac{T_{k+1}}{T_k}$ を求めよ。 $(2) \lim_{n \to \infty} \sum_{k=1}^n T_k \ \emph{e} \ S \ \emph{e}$ 用いて表せ。

$$oxed{2}$$
 行列 $A=rac{1}{2}egin{pmatrix} \cosrac{\pi}{3} & -\sinrac{\pi}{3} \ \sinrac{\pi}{3} & \cosrac{\pi}{3} \end{pmatrix}$ の表す 1 次変換を f とする。点 $P(16\sqrt{3},16)$ をとり、 $P_1=f(P)$ 、 $P_{n+1}=f(P_n)\;(n=1,2,3,\cdots)$ とする。正の整数 k に対して、次の条件をみたす領域を D_k とする。

$$x < 0, \quad y < 0, \quad \sqrt{3}x + y \le -2^{-k}$$

このとき D_k に含まれる P_n の個数を k で表せ。

 α を 2 次方程式 $x^2-2x-1=0$ の解とするとき, $(a+5\alpha)(b+5c\alpha)=1$ をみたす整数の組 (a,b,c) をすべて求めよ。ただし、必要ならば $\sqrt{2}$ が無理数であることは証明せずに用いてよい。

 $oxed{4}$ 平面上の三角形 OAB を考え,辺 AB の中点を M とする。

$$\vec{a} = \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}, \quad \vec{b} = \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$$

とおき,点 P を $\vec{a}\cdot\overrightarrow{OP}=-\vec{b}\cdot\overrightarrow{OP}>0$ であるようにとる。直線 OP に A から下ろした垂線と直線 OP の交点を Q とする。

- (1) \overrightarrow{MQ} と \overrightarrow{b} は平行であることを示せ。
- (2) $|\overrightarrow{MQ}| = \frac{1}{2}(|\overrightarrow{OA}| + |\overrightarrow{OB}|)$ であることを示せ。

- **5** $n=1,2,3,\ldots$ に対して、 $y=\log(nx)$ と $\left(x-\frac{1}{n}\right)^2+y^2=1$ の交点の うち第 1 象限にある点を (p_n,q_n) とする。
 - (1) 不等式 $1-q_n^2 \leq \frac{(e-1)^2}{n^2}$ を示すことにより、 $\lim_{n\to\infty} q_n = 1$ を証明せよ。ただし、e は自然対数の底である。
 - (2) $S_n = \int_{\frac{1}{-}}^{p_n} \log(nx) dx$ を p_n で表せ。
 - (3) $\lim_{n\to\infty} nS_n$ を求めよ。