- $\boxed{\mathbf{1}}$ p は素数, r は正の整数とする. 以下の問いに答えよ.
 - (1) x_1, x_2, \cdots, x_r についての式 $(x_1 + x_2 + \cdots + x_r)^p$ を展開したときの 単項式

$$x_1^{p_1}x_2^{p_2}\cdots x_r^{p_r}$$

の係数を求めよ. ここで、 p_1, p_2, \cdots, p_r は 0 または正の整数で

$$p_1 + p_2 + \dots + p_r = p$$

をみたすとする.

(2) x_1, x_2, \dots, x_r が正の整数のとき,

$$(x_1 + x_2 + \dots + x_r)^p - (x_1^p + x_2^p + \dots + x_r^p)$$

はpで割り切れることを示せ.

(3) r は p で割り切れないとする. このとき, $r^{p-1}-1$ は p で割り切れることを示せ.

- $oxed{2}$ a>0 は定数,heta は $0< heta<rac{\pi}{2}$ の範囲を動く変数とする.xyz 空間で $(a\cos heta,a\sin heta,0)$ に中心をもち半径が a の球を S とする.さらに,S を zx 平面により二分し y 軸の負の方向にある部分を S_1 ,S を yz 平面により二分し x 軸の負の方向にある部分を S_2 とする.
 - (1) S の体積 $V_1(\theta)$ を求めよ.
 - (2) S から S_1 と S_2 を取り除いた立体の体積を $V(\theta)$ とするとき,

$$V(\theta)\left(0<\theta<\frac{\pi}{2}\right)$$

の最大値を求めよ.

- **3** 曲線 $C: y = \frac{e^x}{1+e^x}$ 上に点 $A\left(a\,,\,\frac{e^a}{1+e^a}\right)$ をとる。ただし,a>0 とする。
 - (1) C 上にあり A とは異なる点 $P\left(p,\frac{e^p}{1+e^p}\right)$ について,そこでの接線が A での接線と平行となるように p の値を定めよ。
 - (2) p は上で定めた値とする。C と x 軸および 2 直線 $x=a,\ x=p$ で 囲まれた図形を, x 軸のまわりに 1 回転させてできる回転体の体積を 求めよ。

4 円
$$C$$
 は、 2 つの放物線 $P_1: y = \frac{1}{4a}x^2$ $(a > 0)$ と

$$P_2: y = -\frac{1}{4b}x^2 + m \quad (b > 0, m > 0)$$

で囲まれた領域内にあり、両方の放物線と共有点をもち、さらに y 軸上に中心をもつとする。このとき、以下のことを示せ。

- (1) C が P_1 および P_2 のそれぞれと 1 点のみを共有するならば, $m \leq 4a$ かつ $m \leq 4b$ である。
- (2) C が P_1 および P_2 のそれぞれと 2 点を共有するならば, $(a+b)^2 < ma$ かつ $(a+b)^2 < mb$ である。