- $oxed{1}$ a を自然数とする。O を原点とする座標平面上で行列 $A=egin{pmatrix} a & -1 \ 1 & a \end{pmatrix}$ の表す 1 次変換を f とする。
 - (1) r>0 および $0\leq \theta<2\pi$ を用いて $A=\begin{pmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{pmatrix}$ と表すとき、 $r,\cos\theta,\sin\theta$ を a で表せ。
 - (2) 点 Q(1,0) に対し、点 Q_n $(n=1,2,3,\cdots)$ を

$$Q_1 = Q, \quad Q_{n+1} = f(Q_n)$$

で定める。 $\triangle OQ_nQ_{n+1}$ の面積 S(n) を a と n を用いて表せ。

(3) f によって点 (2,7) に移される点 P の x 座標の小数第一位を四捨五 入して得られる近似値が 2 であるという。自然数 a の値を求めよ。 またこのとき $S(n)>10^{10}$ となる最小の n の値を求めよ。ただし $0.3<\log_{10}2<0.31$ を用いてよい。

里数 θ が動くとき,xy 平面上の動点 $P(0,\sin\theta)$ および $Q(8\cos\theta,0)$ を考える。 θ が $0 \le \theta \le \frac{\pi}{2}$ の範囲を動くとき,平面内で線分 PQ が通過する部分を D とする。D を x 軸のまわりに 1 回転してできる立体の体積 V を求めよ。

- **3** 実数の組 (p,q) に対し、 $f(x) = (x-p)^2 + q$ とおく。
 - (1) 放物線 y = f(x) が点 (0,1) を通り、しかも直線 y = x の x > 0 の 部分と接するような実数の組 (p,q) と接点の座標を求めよ。
 - (2) 実数の組 (p_1,q_1) , (p_2,q_2) に対して, $f_1(x)=(x-p_1)^2+q_1$ および $f_2(x)=(x-p_2)^2+q_2$ とおく。実数 α , β (ただし $\alpha<\beta$) に対して

であるならば、区間 $\alpha \le x \le \beta$ において不等式 $f_1(x) < f_2(x)$ がつねに成り立つことを示せ。

(3) 長方形 $R:0 \le x \le 1,0 \le y \le 2$ を考える。また、4 点 $P_0(0,1)$ 、 $P_1(0,0)$ 、 $P_2(1,1)$ 、 $P_3(1,0)$ をこの順に線分で結んで得られる折れ線を L とする。実数の組 (p,q) を、放物線 y=f(x) と折れ線 L に共有点がないようなすべての組にわたって動かすとき、R の点のうちで放物線 y=f(x) が通過する点全体の集合を T とする。R から T を除いた領域 S を座標平面上に図示し、その面積を求めよ。

- **4** a,b,c を正の定数とし、x の関数 $f(x) = x^3 + ax^2 + bx + c$ を考える。 以下、定数はすべて実数とする。
 - (1) 定数 p,q に対し、次をみたす定数 r が存在することを示せ。

$$x \ge 1$$
 ならば $|px+q| \le rx$

(2) 恒等式 $(\alpha - \beta)(\alpha^2 + \alpha\beta + \beta^2) = \alpha^3 - \beta^3$ を用いて、次をみたす定数 k, l が存在することを示せ。

$$x \ge 1$$
 ならば $\left| \sqrt[3]{f(x)} - x - k \right| \le \frac{l}{x}$

(3) すべての自然数 n に対して、 $\sqrt[3]{f(n)}$ が自然数であるとする。このとき関数 f(x) は、自然数の定数 m を用いて $f(x)=(x+m)^3$ と表されることを示せ。

5 正数 r に対して, $a_1=0$, $a_2=r$ とおき,数列 $\{a_n\}$ を次の漸化式で定める。

$$a_{n+1} = a_n + r_n(a_n - a_{n-1}) \quad (n = 2, 3, 4, \dots)$$

ただし a_n と a_{n-1} から漸化式を用いて a_{n+1} を決める際には硬貨を投げ,表が出たとき $r_n=\frac{r}{2}$,裏が出たとき $r_n=\frac{1}{2r}$ とする。ここで表が出る確率と裏が出る確率は等しいとする。 a_n の期待値を p_n とするとき,以下の問いに答えよ。

- (1) p_3 および p_4 を, r を用いて表せ。
- (2) $n \ge 3$ のときに p_n を, n と r を用いて表せ。
- (3) 数列 $\{p_n\}$ が収束するような正数 r の範囲を求めよ。
- (4) r が (3) で求めた範囲を動くとき、極限値 $\lim_{n \to \infty} p_n$ の最小値を求めよ。