- 直 整標平面上に原点 O を中心とする半径 5 の円 C がある. n=2 または n=3 とし,半径 n の円 C_n が円 C に内接して滑ることなく回転していく とする. 円 C_n 上に点 P_n がある. 最初,円 C_n の中心 O_n が (5-n,0) に,点 P_n が (5,0) にあったとして,円 C_n の中心が円 C の内部を反時計回りに n 周して,もとの位置に戻るものとする.円 C と円 C_n の接点を S_n とし,線分 OS_n が x 軸の正の方向となす角を t とする.
 - (1) 点 P_n の座標を t と n を用いて表せ.
 - (2) 点 P_2 の描く曲線と点 P_3 の描く曲線は同じであることを示せ.

- $oxed{2}$ m=2 または m=3 とする。n を自然数とし,1 以上 n 以下の整数値をとる m 項の数列 $\{a_1,\cdots,a_m\}$ のうち, $1\leq k\leq m-1$ に対して $2a_k\leq a_{k+1}$ を満たすものの個数を $S_m(n)$ とする。
 - (1) $S_2(n)$ を求めよ。
 - (2) $S_3(2n+1) S_3(2n) = S_2(j)$ を満たす自然数 j を求めよ。
 - (3) 極限値

$$\lim_{n\to\infty}\frac{S_3(n)}{n^3}$$

を求めよ。

3
$$x, y$$
は $-\frac{\pi}{2} < x < \frac{\pi}{2}, -\frac{\pi}{2} < y < \frac{\pi}{2}$ の範囲にある 0 でない実数で、次の等式
$$\sin^3 x + \sin^3 y = \frac{3\sqrt{15}}{32}, \quad \frac{\sin y}{\sin x} + \frac{\sin x}{\sin y} = 3$$

を満たすとする. このとき, x+y の値を求めよ.

- 4 座標平面上に原点 O を中心とする半径 1 の円 C がある。点 A (-2,0) を通る直線が y>0 の範囲にある点 P において円 C と接するとする。自然数 $n\leq 2$ に対して点 A を通る (n-1) 本の直線で \angle OAP を n 等分する。これらの直線を直線 AO となす角が小さいものから順に l_1,\cdots,l_{n-1} とし,直線 l_k と円 C の 2 つの交点のうち点 A に近い方を Q_k ,他方を R_k とする。
 - (1) $AR_k^2 AQ_k^2$ を n と k を用いて表せ。
 - (2) 極限値

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} (AR_k^2 - AQ_k^2)$$

を求めよ。